Short Term Oxidation of a Ti-46Al-8Nb Alloy at 700°C in Air

Article Preview

Abstract:

Thermogravimetry was used to study the oxidation behaviour of a lamellar Ti46Al8Nb alloy during holding at 700°C in synthetic air. A parabolic plot of the oxidation kinetics shows three different regimes over the total duration (50 h) of the tests corresponding to decreasing values of the parabolic rate constant. The oxide scale was characterized by glancing-angle X-Ray diffraction and transmission electron microscopy. The scale was found to be bi-layered with an outer part that consists of amorphous aluminium rich oxide whilst the inner layer is made of very small cristalites of titania distributed in the same amorphous oxide.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

485-490

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.S. Choudhury, H.C. Graham, J.W. Hinze, in: Z.A. Foroulis, F.S. Pettit (Eds. ), Properties of high temperature alloys, The Electrochemical Society, 1976, pp.668-680.

Google Scholar

[2] G.H. Meier, D. Appalonia, R.A. Perkins, K.T. Chiang, in: T. Grobstein, J. Doychak (Eds. ), Oxidation of High-Temperature Intermetallics, TMS, 1989, pp.185-193.

Google Scholar

[3] M.P. Brady, B.A. Pint, P.F. Tortorelli, I.G. Wright, R.J. Hanrahan, in: M. Schütze (Ed. ), Materials Science and Technology, Corrosion and Environmental Degradation, VCH, 2000, pp.229-325.

Google Scholar

[4] J.M. Rakowski et al., Scripta Metall. et Mater. Vol. 33 (1995), p.997.

Google Scholar

[5] I.E. Locci, M.P. Brady, R.A. MacKay, J. W. Smith, Scripta Mater. Vol. 37 (1997), p.761.

Google Scholar

[6] S. Taniguchi, T. Shibata, Intermetallics Vol. 4 (1996), p. S85-S93.

Google Scholar

[7] M. Thomas, O. Berteaux, F. Popoff, M. -P. Bacos, Intermetallics Vol. 14 (2006), p.1143.

Google Scholar

[8] L. Teng, D. Nakatomi, S. Seetharaman, Metall Mater Trans. Vol. B38 (2007), p.477.

Google Scholar

[9] P. Villars, Pearson's handbook, ASM International, (1997).

Google Scholar

[10] C. Boudias, D. Monceau, CaRine Crystallography software (3. 1) 1989-(1998).

Google Scholar

[11] W. Lu, C. Chen, Y. Xi, C. Guo, F. Wang, L. He, Intermetallics Vol. 15 (2007), p.989.

Google Scholar

[12] E. Godlewska, M. Mitoraj, F. Devred, B.E. Nieuwenhuys, J. Therm. Anal. Cal. Vol. 88 (2007), p.225.

Google Scholar

[13] C. Guo, C. Zang, W. Lu, L. He, Y. Xi, F. Wang, Oxid. Met. Vol. 68 (2007), p.65.

Google Scholar

[14] V. Podgursky, V. Rose, J. Costina, R. Franchy, Surface Science Vol. 601 (2007), p.3315.

DOI: 10.1016/j.susc.2007.06.003

Google Scholar

[15] M. Haerig, S. Hofmann, Applied Surface Science Vol. 125 (1998), p.99.

Google Scholar

[16] K. Shimizu et al., Corrosion Science Vol. 40 (1998), p.557.

Google Scholar

[17] V. Rose, V. Podgursky, I. Costina, R. Franchy, H. Ibach, Surface Science Vol. 577 (2005), p.139.

DOI: 10.1016/j.susc.2004.12.028

Google Scholar