Synthesis of La1-xSrxCoO3-δ by a Polymeric Precursor Route Using Microwave Heating

Article Preview

Abstract:

La1-xSrxCoO3-δ (x=0, 0.2, 0.5) powders were prepared by a polymeric precursor route, with the application of microwave heating for the precursor preparation. Single-phase oxide powders are obtained after calcination at 700°C for x=0, 0.2 and 1300 °C for x=0.5. XRD, FTIR and TG-DTG measurements were used to examine the powder precursors as well as the intermediate and final products. SEM images indicated the small grain size of samples with x=0, 0.2. Conductivity and thermal expansion were measured by means of DC method and dilatometry respectively. The end member LaCoO3-δ showed a semiconducting behaviour, while doped samples showed a metallic behaviour at high temperatures. La0.8Sr0.2CoO3-δ showed the highest conductivity of all samples investigated, at temperatures higher than 300 °C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

901-907

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. N. Petrov, V. A. Cherepanov, A. Yu. Zuev, J Solid State Electrochem. 10 (2006), p.517.

Google Scholar

[2] J. M. Ralph, A. C. Schoeler, M. Krumpelt, J. Mater. Sci. 36 (2001), p.1161.

Google Scholar

[3] R. Marić, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki and K. Miura, J. Electrochem. Soc. 146 (1999) (6), p. (2006).

Google Scholar

[4] M. Popa, M. Kakihana, Solid State Ionics 151 (2002), p.251.

Google Scholar

[5] M. M. Natile, E. Ugel, C. Maccato, A. Glisenti, Appl. Catal. B 72 (2007), p.351.

Google Scholar

[6] M.P. Pechini, U.S. Patent No. 3 330 697 (1967).

Google Scholar

[7] M. Kakihana, J. Sol-Gel Sci. Technol. 6 (1996), p.7.

Google Scholar

[8] A. Gaki, O. Anagnostaki, D. Kioupis, T. Perraki, D. Gakis, G. Kakali, J. Alloys Compd. 451 (2008), p.305.

DOI: 10.1016/j.jallcom.2007.04.062

Google Scholar

[9] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (4th edition, Wiley, New York 1986).

Google Scholar

[10] M.A. Señarís-Rodríguez and J.B. Goodenough, J. Solid State Chem. 118 (1995), p.323.

Google Scholar

[11] A. Mineshige, M. Kobune, S. Fujii, Z. Ogumi, M. Inaba, T. Yao and K. Kikuchi, J. Solid State Chem. 142 (1999), p.374.

DOI: 10.1006/jssc.1998.8051

Google Scholar

[12] A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, P. Kofstad, Solid State Ionics 80 (1995), p.189.

Google Scholar

[13] K. Iwasaki, T. Ito, T. Nagasaki, Y. Arita, M. Yoshino and T. Matsui, Journal of Solid State Chemistry 181 (2008), p.3145.

DOI: 10.1016/j.jssc.2008.08.017

Google Scholar

[14] J. Mizusaki, J. Tabuchi, T. Matsuura, S. Yamauchi, K. Fueki, J. Electrochem. Soc. 136 (1989), p. (2082).

Google Scholar