Hydrogen Brittleness of Austenitic Steels

Article Preview

Abstract:

The electronic concept for hydrogen embrittlement (HE) of austenitic steels is developed based on the hydrogen-caused increase of the concentration of free (i.e. conduction) electrons. It is shown that, as consequence, the shear module locally decreases, which in turn leads to the decrease in the stress for activation of dislocation sources, the line tension of dislocations, the distance between the dislocations in pileups and, in consistency with the theory of hydrogen-enhanced localized plasticity (HELP), promotes the reversible hydrogen brittleness. The analysis of the electronic and elasticity approaches to HELP is carried out using the experimental data. The effect of alloying elements on the mechanical properties is studied and a concept for design of hydrogen-resistant austenitic steels is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

104-109

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.A. Steigerwald, F.W. Schaller, A.R. Troiano: Trans. Metall. Soc. AIME Vol. 218 (1960), p.832.

Google Scholar

[2] R.A. Oriani, P.H. Josephic: Acta � etal. Vol. 22 (1974), p.1065.

Google Scholar

[3] A. Inoue, Y. Hosoya, T. Masumoto: Trans. ISIJ Vol. 19 (1979), p.170.

Google Scholar

[4] N. Narita, C.J. Altstetter, H.K. Birnbaum: Metall. Trans. Vol 13ª (1982), p.1355.

Google Scholar

[5] H.K. Birnbaum, P. Sofronis: Mater. Sci. & Eng. Vol. A176 (1994), p.191.

Google Scholar

[6] P.J. Ferreira, I.M. Robertson, H.K. Birnbaum: Acta Mater. Vol. 46 (1998), p.1749.

Google Scholar

[7] P. Sofronis, H.K. Birnbaum: J. Mech. Phys. Solids Vol. 49 (1995), p.49.

Google Scholar

[8] Y. Lyang, P. Sofronis, N. Aravas: Acta Mater. Vol. 51 (2003) p.2717.

Google Scholar

[9] R.M. Gaybidulin, B.A. Kolachev, P.D. Drozdov: Problems of Strength (in Russian) Vol. 12 (1971) p.36.

Google Scholar

[10] F. Lecoester, J. Chêne, D. Noel: Mater. Sci. & Eng. Vol. A262 (1999), p.173.

Google Scholar

[11] Y. Tomota, Y. Xia, K. Inoue: Acta Mater. Vol. 46 (1998), p.1577.

Google Scholar

[12] V.G. Gavriljuk, V.N. Shivanyuk, B.D. Shanina: Acta Mater. Vol. 53 (2005), p.5017.

Google Scholar

[13] V.G. Gavriljuk, B.D. Shanina, N.P. Baran et al.: Phys. Rev. B Vol. 48 (1993), p.3224.

Google Scholar

[14] B.D. Shanina, V.G. Gavriljuk, S.P. Kolesnik, V.N. Shivanyuk: J. Physics D: Applied Physics Vol. 32 (1999), p.298.

Google Scholar

[15] B.D. Shanina, V.G. Gavriljuk, A.A. Konchitz, S.P. Kolesnik, A.V. Tarasenko: Phys. Stat. Sol. (a) Vol. 149 (1995), p.711.

Google Scholar

[16] C. Herring, in: Magnetism, edited by G.T. Rado and H. Sull, Acad. Press, New York - London, 1965, p.135.

Google Scholar

[17] S.M. Teus, V.N. Shyvanyuk, B.D. Shanina, V.G. Gavriljuk: Phys. Stat. Sol. (a) Vol. 204 (2007), p.4249.

Google Scholar

[18] W. Seith, Th. Daur: Zs. Elektrochem. Vol. 44 (1938), p.256.

Google Scholar

[19] W. Seith, O. Kubaschewski: Zs. Elektrochem. Vol. 41 (1935), p.551.

Google Scholar

[20] G. Schoeck, E. Bisogni, J. Shyne: Acta Metall Vol. 12 (1964), p.1466.

Google Scholar

[21] A. Rivière , J.P. Amirault, J. J. Woirgard: Nuovo Cimento Vol. 33 (1976), p.398.

Google Scholar

[22] V.G. Gavriljuk, V.A. Duz',S.P. Yefimenko, O.G. Kvasnevsky (in Russian): Physics of Metals and Metallogr. Vol. 64 (1987), p.1132.

Google Scholar

[23] A. Seeger: Phys. Stat. Sol. (a) Vol. 55 (1979), p.457.

Google Scholar

[24] W. Köster, K. Kampschulte: Arch. Eisenhüttenw. Vol. 32 (1961), p.809.

Google Scholar

[25] K. Takita, K. Sakamoto: Scripta Mater. Vol. 10 (1976), p.399.

Google Scholar

[26] V.G. Gavriljuk, B.D. Shanina, H. Berns: Acta Mater. Vol. 48(2000), p.3879.

Google Scholar

[27] S.M. Teus, V.N. Shyvanyuk, V.G. Gavriljuk: Mater. Sci. & Eng. A Vol. 497 (2008) p.290.

Google Scholar