Microstructure Formation in Cast β-Solidifying γ-Titanium Aluminide Alloys

Article Preview

Abstract:

In view of the development of improved TiAl cast alloys the potential of the  transformation and its dependence on the addition of several alloying elements has been investigated. It was found that microstructural refinement in  solidifying alloys can be attributed to the alloying effect on the kinetics of the  transformation. This also holds for grain refinement through Borides which apparently serve as nucleation sites for the  phase in the solid-state transformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1394-1399

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y-W. Kim, D. M Dimiduk, in: Structural Intermetallics 1997 (Eds. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1997), pp.531-543.

Google Scholar

[2] F. Appel, R. Wagner: Mater. Sci. Eng. R Vol. R22 (1998), pp.187-268.

Google Scholar

[3] M. Yamaguchi, H. Inui, K. Ito: Acta mater. Vol. 48 (2000), pp.307-322.

Google Scholar

[4] S. Naka, M. Thomas, C. Sanchez, T. Khan, in: Structural Intermetallics 1997 (Eds. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1997), pp.313-322.

Google Scholar

[5] I. Ohnuma. Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida: Acta mater. Vol. 48 (2000), pp.3113-3123.

DOI: 10.1016/s1359-6454(00)00118-x

Google Scholar

[6] V. Küstner, M. Oehring, A. Chatterjee, V. Güther, H. -G. Brokmeier, H. Clemens, F. Appel, in: Gamma Titanium Aluminides 2003 (Eds. Y-W. Kim, H. Clemens, A.H. Rosenberger, TMS, Warrendale, PA, 2003), pp.89-96.

Google Scholar

[7] V. Küstner, M. Oehring, A. Chatterjee, H. Clemens, F. Appel, in: Solidification and Crystallization, (Ed. D. Herlach, Wiley-VCH, Weinheim, 2004), pp.250-257.

Google Scholar

[8] M. Oehring, V. Küstner, F. Appel, U. Lorenz: Mater. Sci. Forum Vols. 539-543 (2007), pp.1475-1480.

DOI: 10.4028/www.scientific.net/msf.539-543.1475

Google Scholar

[9] O. Hunziker, M. Vandyoussefi, W. Kurz: Acta mater. Vol. 46 (1998), pp.6325-6336.

Google Scholar

[10] R.M. Imayev, V.M. Imayev, M. Oehring, F. Appel: Intermetallics Vol. 15 (2007), pp.451-460.

DOI: 10.1016/j.intermet.2006.05.003

Google Scholar

[11] M. Krishnan, B. Natarajan, V.K. Vasudevan, D.M. Dimiduk, in: Structural Intermetallics 1997, (Eds. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1997), pp.235-244.

Google Scholar

[12] T.T. Cheng, M.H. Loretto: Acta Mater. Vol. 46 (1998), pp.4801-4819.

Google Scholar

[13] M. Takeyama, Y. Ohmura, M. Kikuchi, T. Matsuo: Intermetallics Vol. 6 (1998), pp.643-646.

Google Scholar

[14] Z. Zhang, K.J. Leonard, D.M. Dimiduk, V.K. Vasudevan, in: Structural Intermetallics 2001 (Eds. K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, J.D. Whittenberger, TMS, Warrendale, PA, 2001), pp.515-526.

Google Scholar

[15] Y. Jin, J.N. Wang, J. Yang, Y. Wang, Scripta Mater. Vol. 51 (2004), pp.113-117.

Google Scholar

[16] H. Clemens, H.F. Chladil, W. Wallgram, G.A. Zickler, R. Gerling, K. -D. Liss, S. Kremmer, V. Güther, W. Smarsly: Intermetallics Vol. 16 (2008), pp.827-833.

DOI: 10.1016/j.intermet.2008.03.008

Google Scholar

[17] D. E Larsen, in: Intermetallic Matrix Composites (Eds. D.L. Anton, R. McMeeking, D. Miracle, P. Martin, Mater. Res. Soc. Symp. Proc. Vol. 194, MRS, Pittsburgh, PA, 1990), pp.285-292.

Google Scholar

[18] T.T. Cheng, in: Gamma Titanium Aluminides 1999 (Eds. Y-W. Kim, D.M. Dimiduk, M.H. Loretto, TMS, Warrendale, PA, 1999), pp.389-396.

Google Scholar

[19] U. Hecht, V. Witusiewicz, A. Drevermann, J. Zollinger: Intermetallics Vol. 16 (2008), pp.969-978.

DOI: 10.1016/j.intermet.2008.04.019

Google Scholar