A Study on the Formation of Serrated Grain Boundaries and its Applications in Nimonic 263

Abstract:

Article Preview

The formation of serrated grain boundaries and its subsequent effect on creep resistance have been investigated in a wrought nickel based superalloy Nimonic 263. The grain boundaries were considerably serrated without the presence of γ' phases or M23C6 when a specimen was slow-cooled from the solution treatment temperature. The high resolution observation on the lattice image of the serrated grain boundary suggested that the grain boundaries tended to serrate to have specific segments approaching to one {111} low-index plane at a boundary in order to have lower interfacial free energy of grain boundary. The grain boundary serration led to a change in M23C6 carbide characteristics: the carbide morphology from granular to planar, a lowered density and their coherency pattern to two neighboring grains from consistent to zigzag. The improvement of creep resistance was noticeably observed by the introduction of GB serration without deterioration of basic mechanical properties. This improvement in creep resistance by the serration was associated with a lower rate of cavitation and crack propagation through the modification of carbide characteristics as well as grain boundary configuration.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

2245-2250

DOI:

10.4028/www.scientific.net/MSF.638-642.2245

Citation:

H. U. Hong et al., "A Study on the Formation of Serrated Grain Boundaries and its Applications in Nimonic 263 ", Materials Science Forum, Vols. 638-642, pp. 2245-2250, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.