Influence of Continuous Annealing Conditions on the Microstructure and Mechanical Properties of a C-Mn Dual Phase Steel

Article Preview

Abstract:

The influence of continuous annealing variables on the microstructure and mechanical properties of a C-Mn Dual Phase (DP) steel was studied. The annealing cycles were simulated using a Gleeble machine. Some specimens were quenched at different stages of the annealing cycle in order to evaluate the microstructural evolution during the annealing process. Tensile tests and microstrutural analysis were carried out. The results showed that high heating rates increased the final recrystallization temperature and as a consequence the microstructure obtained was refined. Austenite grain nucleation and growth were also influenced by the heating rates. Soaking temperature was the most influent variable on the mechanical properties, i. e., the yield strength increased and the tensile strength decreased with an increase in the soaking temperature. Microstructural analysis showed that not only martensite, but also bainite and martensite-retained autenite constituent (MA) were formed. Undissolved carbides were also detected by transmission electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

3479-3484

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Hashigushi, T. Kato, M. Nishida, T. Tanaka, Kawasaki Steel Tech. Report n. 1 (1980) 70-78.

Google Scholar

[2] H. Shirasawa, J. G. Thomson, Trans. ISIJ, V. 27 n. 05 (1987) 360-365.

Google Scholar

[3] Z. Sun, Z. Wang, S. Ai, Mat. Tech. n. 5 (1989) 215-220.

Google Scholar

[4] Y. Tomita, J. of Mat. Sci. V. 25 (1990) 5179-5184.

Google Scholar

[5] W. Bleck. International Symp. of LC and ULC Sheet Steels, Aachen V. 1 (1998) 277-287.

Google Scholar

[6] S. Kim, S. Lee, Metall. and Mater. Trans. A, V. 31A (2000) 1753-1760.

Google Scholar

[7] K. Nakajima, T. Urabe, Y. Hosoya, S. Kamiishi, T. Miyata, N. Takeda, ISIJ International V. 41 n. 3 (2001) 298-304.

DOI: 10.2355/isijinternational.41.298

Google Scholar

[8] S. Sun, M. Pugh, Mater. Sci. and Eng. A V. 335 (2002) 298-308.

Google Scholar

[9] M. V. G. Souza, T. M. F. Melo, G. M. A. Filho, J. A. Gritti, J. A. Costa, XXXIV Seminário de Laminação ABM (1997) 27-39.

Google Scholar

[10] M. D. Geib, D. K. Matlock, G. Krauss, Metall. Trans. A V. 11A (1980) 1683-1689.

Google Scholar

[11] G. R. Speich, V. A. Demarest, R. L. Miller. Metall. Trans. A V. 12A (1981) 1419-1428.

Google Scholar

[12] H-J. Bunge, C. M. Vlad, H-H. Kopp, Arch. Eisenhüttenwes V. 55 n. 4 (1984) 163-168.

Google Scholar

[13] M. Erdogan, R. Priestner, Mat. Sci. and Tech. V. 15 (1999) 1273-1284.

Google Scholar

[14] A. Pichler, S. Traint, G. Arnoldner, E. Werner, R. Pippan, P. Stiaszny, 42 nd MWSP Conf. Proc., Iron and Steel Institute (2000) 573-593.

Google Scholar

[15] F. S. Barrado, T. M. F. Melo, L. C. Cândido, L. B. Godefroid, Seminário de Laminação, Processos e Produtos Laminados e Revestidos, V. 40 (2003) 536-544.

Google Scholar

[16] S. Estay, L. Cheng, G. R. Purdy, Canadian Metall. Quarterly V. 23 n. 1 (1984) 121-130.

Google Scholar

[17] W. Chen, Steel Times, April (2000) 134-135.

Google Scholar

[18] K. W. Andrews, Journal of Iron and Steel Institute (1965) 721-727.

Google Scholar

[19] Test methods and definitions for mechanical testing of steel products, ASTM Standard A 370 - 08b ASTM (2008).

Google Scholar

[20] Garcia, C. I.; DeArdo, A. J.; Metall. Trans. A, V. 12A (1981) 521-527.

Google Scholar