Molecular Dynamics Investigation of Relaxation and Local Structure Changes in a Quenched Molten TiAl Alloy Film

Article Preview

Abstract:

Relaxation and local structure changes of a molten TiAl alloy film during quenching have been investigated by molecular dynamics simulations within the framework of embedded atom method (EAM). The details of atom motions are analyzed using mean square displacement (MSD). Accompanying with massive atom rearrangement at a certain quenched temperature and time, local structural patterns are identified by decomposing peaks of pair distribution functions (PDFs) according to the pair analysis(PA) technique. The relaxation factor clearly reveals two relaxation processes involving in slow relaxation and fast relaxation of the quenched liquid TiAl film. Concerning the studied film, the obtained results reveal how quenched temperatures affect local structure changes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-329

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O.N. Senkov and M. D. Uchic, Mater. Sci. Eng. A, 340(2003), 216.

Google Scholar

[2] M. Shimono and H. Onodera , Mater. Trans. JIM, 39(1998), 147.

Google Scholar

[3] X. X. Qu, Q. X. Zhang QX, Q. B. Zou, N. Balasubramanian, P. Yang and K. Y. Zeng, Mater. Sci. Semiconduc. Process., 5(2002), 35.

Google Scholar

[4] L. Zhang L, C. B. Zhang and Y. Qi, Phys. Lett. A, 372(2008), 2874.

Google Scholar

[5] S. N. Xu, L. Zhang, C. B. Zhang and Y. Qi, Physica B (2009)Accepted for publication.

Google Scholar

[6] L. Zhang and H. X. Sun H X, Solid State Commun. 149(2009), 1722.

Google Scholar

[7] L. Zhang, S. N. Xu, C. B. Zhang and Y. Qi, Comput. Mater. Sci. (2009) Doi: 10. 1016/j. commatsci/2009. 07. 002.

Google Scholar

[8] L. Zhang L, C. B. Zhang and Y. Qi, Physica B 404(2009), 205.

Google Scholar

[9] L. Zhang and H. X. Sun, Chin. J. Chem. Phys. 22(2009), 69.

Google Scholar

[10] L. Zhang, S. Q. Wang and H. Q. Ye, Chin. Phys. 15(2006), 610.

Google Scholar

[11] D. Farkas, Modeling Simul. Mater. Sci. Eng. 2 (1994), 975.

Google Scholar

[12] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, S. C. Glotzer, Phys. Rev. Lett. , 79(1997), 15.

Google Scholar

[13] J.D. Honeycutt and H.C. Andersen, J. Phys. Chem., 91(1987), 4950.

Google Scholar

[14] A. S. Clarke and H. Jonsson, Phys. Rev. E 47(1993), 3975.

Google Scholar