Investigation on Microstructures of Multipass Deposited Metal for 9Cr-1Mo Ferritic Steels

Article Preview

Abstract:

The microstructures of multipass deposited metal for 9Cr-1Mo ferritic steels were investigated. Columnar martensites and a number of film austenites retained along the lath of martensite comprised primary microstructure. -ferrite was formed and the volume fraction of -ferrite increased as the chromium equivalent (Creq) of steel composition increased. Subjected to weld heating, the primary microstructure transformed. “Weld bead heat-affected zone (WBHAZ)” was thus formed. The morphology of -ferrite changed and columnar martensite grains were broken in sub-zone I and II of WBHAZ. The size and amount of -ferrite reduced because of austenitization and growth of austenite in sub-zone III of WBHAZ. Retained austenite morphology changed from film into island-like in sub-zone IV and martensite tempered to some degree in sub-zone V of WBHAZ. The precipitation and evolution of M23C6, MX and Laves phase by means of neutron diffraction is to be conducted in the future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

270-274

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Hahn, W. Bendick, H. Heuser, et al, in: 2003 EPRI international maintenance conference, Chicago, (2003), pp.1-17.

Google Scholar

[2] J. C. Vaillant, B. Vandenberghe, B. Hahn: International Journal of Pressure Vessels and Piping, Vol. 85, (2008), pp.38-46.

Google Scholar

[3] K. Laha, K. S. Chandravathi, P. Parameswaran: Metall. Mater. Trans. A, Vol. 38A, (2007), pp.58-68.

Google Scholar

[4] T. W. M. Tabuchi, M. Yamazaki: International Journal of Pressure Vessels and Piping, Vol. 83, (2006), pp.63-71.

Google Scholar

[5] J. G. Zhang, F. W. Noble, B. L. Eyre: Mater. Sci. Technol., Vol. 7, (1991), p.315.

Google Scholar

[6] K. Laha, K. B. S. Rao, S. L. Mannan: Mater. Sci. Eng. A, Vol. 129, (1990), p.183.

Google Scholar

[7] R. S. Fidler, D. J. Gooch, S. F. Pugh, E. A. Little (Eds. ), in: Proceedings of the International Conference on Ferritic Steels for Fast Reactor Steam Generators, BNES, London, (1978), p.128.

DOI: 10.1680/fsffrsgv1.00490.0019

Google Scholar

[8] P. Roy, T. Lauritzen: Weld. Res. Suppl., 45, (1986).

Google Scholar

[9] R. Mythili, V. T. Paul, S. Saroja: Journal of Nuclear Materials, Vol. 312, (2003), pp.199-206.

Google Scholar

[10] K. H. D. H. Bhadeshia, L.E. Svensson: Mathematical Modeling of Weld Phenomena, (1993), pp.109-182.

Google Scholar

[11] J. Onoro: Journal of Materials Porcessing Technology, Vol. 180, (2006), pp.137-142.

Google Scholar

[12] H. Andrrn, G. Cai, L. Svensson: Applied surface science, Vol. 87/88, (1995), pp.200-206.

Google Scholar

[13] H. H. Wang: PhD dissertation, Shanghai Jiao Tong University, (2009), p.58.

Google Scholar

[14] M. Vijayalakshmi, S. Saroja, V. S. Saghunathan: Scripta Mater., Vol. 41, (1999), pp.149-152.

Google Scholar

[15] M. Vijayalakshmi, S. Saroja, V. T. Paul: Metall. Mater Trans. A, Vol. 30A, (1999), pp.161-174.

Google Scholar

[16] P. Patriarca: Nuclear Technology, Vol. 28, (1976), pp.516-536.

Google Scholar

[17] R. H. Kaltenhauser, Met. Eng, 1971, Vol. 11, (1971), pp.41-47.

Google Scholar