Solving Complex Thermal and Mass Transport Problems with the Lattice Monte Carlo Method

Article Preview

Abstract:

The Lattice Monte Carlo (LMC) method recently developed by the authors is an unusually powerful and flexible method in which a given phenomenological thermal or mass transport problem is mapped onto a fine-grained lattice which is then analyzed with discrete random walk methods. We provide an overview of the LMC method. For mass diffusion we highlight the addressing of diffusion with reversible reaction. For thermal transport we highlight a calculation of the effective thermal conductivity of sintered hollow sphere structures making use of CT scans of actual material as well as the determination of temperature profiles in phase-change composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1476-1481

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.E. Murch, in Diffusion in Crystalline Solids, edited by G.E. Murch and A.S. Nowick, Chapter 7, Academic Press, Orlando, FL (1984).

Google Scholar

[2] Y. Mishin, I.V. Belova and G.E. Murch: Def. Diff. Forum Vols. 237-240 (2005), p.271.

Google Scholar

[3] A. Haji-Sheikh and E.M. Sparrow: J. Heat Transfer, (Trans ASME) Vol. 89 (1967), p.121.

Google Scholar

[4] T. Fiedler, A. Öchsner, N. Muthubandara, I.V. Belova, G.E. Murch: Mater. Sci. Forum Vol. 553 (2007), p.51.

Google Scholar

[5] I.V. Belova, G.E. Murch, in Cellular and Porous Materials. Thermal Properties, Simulation and Prediction, ed. A. Öchsner, G.E. Murch, J.S. de Lemos, Ch. 3, Wiley-VCH, Weinheim (2008).

DOI: 10.1002/9783527621408

Google Scholar

[6] I.V. Belova, G.E. Murch, T. Fiedler and A. Öchsner: Diffus. Fundamentals Vol. 4 (2007), p.15. 1.

Google Scholar

[7] L.G. Harrison: Trans. Farad. Soc. Vol. 57 (1961), p.1191.

Google Scholar

[8] E.W. Hart: Acta Metall. Vol. 5 (1957), p.597.

Google Scholar

[9] I. Kaur, Y. Mishin and W. Gust: Fundamentals of Grain and Interphase Boundary Diffusion, Wiley, Chichester (1995).

Google Scholar

[10] I.V. Belova and G.E. Murch: Phil. Mag. A Vol. 81 (2001), p.2447.

Google Scholar

[11] P. Murray and G.F. Carey: J. Comp. Phys. Vol. 74 (1988), p.440.

Google Scholar

[12] Z. Koza: Physica A Vol. 300 (2003), p.160.

Google Scholar

[13] J. Crank: The Mathematics of Diffusion, 2nd Edition, Oxford, Oxford University Press, (1979).

Google Scholar

[14] T. Fiedler, A. Öchsner, I.V. Belova, G.E. Murch: Def. Diff. Forum Vol. 273/276 (2008), p.222.

Google Scholar

[15] T. Fiedler, A. Öchsner, I.V. Belova, G.E. Murch: Def. Diff. Forum Vol. 273/276 (2008), p.216.

Google Scholar

[16] T. Fiedler, R. Löffler, T. Bernthaler, R. Winkler, I.V. Belova, G.E. Murch and A. Öchsner: Mater. Lett. Vol. 63 (2009), p.1125.

DOI: 10.1016/j.matlet.2008.10.030

Google Scholar

[17] T. Fiedler, E. Solórzano, F. Garcia-Moreno, A. Öchsner, I.V. Belova and G.E. Murch: Adv. Eng. Mater. Vol. 11 (2009), p.843.

DOI: 10.1002/adem.200900132

Google Scholar

[18] T. Fiedler, A. Öchsner, I.V. Belova and G.E. Murch: Adv. Eng. Mater. Vol. 10 (2008), p.361.

Google Scholar

[19] E. B. S. Mettawee and G. M. R. Assassa: Solar Energy Vol. 81 (2007), p.839.

Google Scholar

[20] M. Kenisarin and K. Mahkamov: Renew. Sustain. Energy Rev. Vol. 11 (2007), p. (1913).

Google Scholar