Effect of Aging on Mechanical Properties of Ti-Mo-Al Biomedical Shape Memory Alloy

Article Preview

Abstract:

Effects of single- and multi-step aging on mechanical properties and shape memory properties of Ti-6Mo-8Al (mol%) biomedical shape memory alloy were studied using tensile tests at room temperature (RT). The solution-treated alloy at RT was two phase of bcc β and martensite α". Tensile tests revealed that the solution-treated alloy exhibited good shape memory effect. As for the single-step aging, (1) pseudoelastic shape recovery by unloading was observed after aging at 623K, (2) the alloy became brittle after aging at 773K due to ω embrittlement, and (3) strength was improved with small shape memory effect by aging at 1023K. On the other hand, after a multistep aging at 773K-1023K-1123K, the alloy was strengthened and showed perfect shape recovery. The improvement must be achieved by the formation of fine and uniform hcp α precipitates.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2150-2153

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Sasano and T. Suzuki: Proc. 5th Intl. Conf. on Titanium, edited by G. Lütjering, U. Zwicker and W. Bunk, Ed., DGM, (1985), p.1667.

Google Scholar

[2] H. Kimura and T. Sohmura: Jpn. Soc. Dental Materials & Devices Vol. 4 (1985), p.134.

Google Scholar

[3] H. Guo, K. Okuda and M. Enomoto: Metall. Mater. Trans. A Vol. 31A (2000), p.599.

Google Scholar

[4] T. Maeshima and M. Nishida: Mat. Trans. Vol. 45 (2004), p.1096.

Google Scholar

[5] T. Maeshima and M. Nishida: Mat. Trans. Vol. 45 (2004), p.1011.

Google Scholar

[6] T. Sugimoto, K. Ikeda, K. Komatsu, K. Sugimoto and K. Kamei: Proc. Sixth World Conf. on Titanium, Vol. II (1988), p.1069.

Google Scholar

[7] H. Hosoda, Y. Ohmatsu and S. Miyazaki: Trans. Mat. Res. Soc. Jpn. Vol. 26 (2001), p.235.

Google Scholar

[8] H. Hosoda, N. Hosoda and S. Miyazaki: Trans. Mat. Res. Soc. Jpn. Vol. 26 (2001), p.243.

Google Scholar

[9] H. Y. Kim, Y. Ohmatsu, J. I. Kim, H. Hosoda and S. Miyazaki: Mat. Trans. Vol. 45 (2004), p.1090.

Google Scholar

[10] N. Hosoda, H. Hosoda and S. Miyazaki: The Fourth Pacific Rim Intl. Conf. Adv. Mat. Processing, edited by S. Hanada et al., JIM, Vol. 2 (2001), p.1623.

Google Scholar

[11] Y. Ohmatsu, H. Hosoda and S. Miyazaki: The Fourth Pacific Rim Intl. Conf. Adv. Mat. Processing, edited by S. Hanada et al., JIM, Vol. 2 (2001), p.1627.

Google Scholar

[12] T. Ishigaki, Y. Matsuki, T. Inamura, K. Wakashima, H. Hosoda and S. Miyazaki: Proc. Intl. Conf. on Shape Memory and Superelastic Technologies, ed. by S. Miyazaki, ASM Intl., (2008), p.559.

Google Scholar

[13] H. Saito, T. Inamura, K. Wakashima, H. Hosoda and S. Miyazaki: Proc. Intl. Conf. Shape Memory and Superelastic Technologies, edited by S. Miyazaki, ASM Intl., (2008), p.565.

Google Scholar

[14] H. Hosoda and T. Inamura: Shape Memory Alloys for Biomedical Applications, edited by T. Yoneyama and S. Miyazaki, Part 1, Chapter 2, (Woodhead Publishing in Materials, Cambridge, England, 2008) p.20.

Google Scholar

[15] T. Nishimura, M. Nishigaki and S. Ohtani: J. Jpn. Inst. Met. Vol. 40 (1976), p.219.

Google Scholar

[16] Y. Takemoto, M. Hida, E. Sukedai and A. Sakakibara: J. Jpn. Inst. Met. Vol. 53 (1989), p.1004.

Google Scholar

[17] Y. Takemoto, M. Hida and A. Sakakibara: J. Jpn. Inst. Met. Vol. 57 (1993), p.261.

Google Scholar

[18] J. C. Williams: Titanium Science & Technology, edited by R. I. Jaffee and H. M. Burte, Vol. 3, (Plenum Press, NY, USA, 1973) p.1433.

Google Scholar

[19] A. Yamamoto, Y. Kohyama, H. Hosoda, S. Miyazaki and T. Hanawa: Mat. Trans. Vol. 48 (2007), p.361.

Google Scholar

[20] T. Inamura, Y. Fukui, H. Hosoda, K. Wakashima and S. Miyazaki: Mat. Trans. Vol. 45 (2004), p.1083.

Google Scholar