Effect of Humidity and Thermal Cycling on Carbon-Epoxy Skin/Aramid Honeycomb Structure

Abstract:

Article Preview

Many modern military aircraft are constructed from composite and bonded structure, such as thin carbon-epoxy laminate bonded to Kevlar® and Nomex® honeycomb. Operation of these platforms in Australian and global conditions will subject the structure to potentially high levels of humidity, extremes in temperature, and for maritime operations, exposure to salt spray conditions. The thin composite laminate is likely to rapidly absorb moisture in a humid environment and enable permeation of moisture into the adhesive and core. In addition to the chemical influence of moisture on the composite structure, the moisture trapped in the honeycomb structure may freeze and expand with changes in altitude during operations or simply due to daily temperature fluctuations at the resident airbase. The combination of moisture ingress in the honeycomb structure and thermal cycling may lead to deteriorated strength of the honeycomb panels over time that would not be observed for long term humid exposure alone. Long term salt water absorption may also have an adverse effect on composites structures. This study investigates the effects of humid environments and thermal cycling on the mechanical properties of composite and honeycomb structures.

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Main Theme:

Edited by:

Jian-Feng Nie and Allan Morton

Pages:

2600-2603

DOI:

10.4028/www.scientific.net/MSF.654-656.2600

Citation:

E. S. Y. Yeo et al., "Effect of Humidity and Thermal Cycling on Carbon-Epoxy Skin/Aramid Honeycomb Structure", Materials Science Forum, Vols. 654-656, pp. 2600-2603, 2010

Online since:

June 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.