Hydrogen Storage Properties of Mg-Ni Alloy Catalysed by Multi-Walled Carbon Nanotubes

Article Preview

Abstract:

The hydrogen storage performance of ball-milled sample of cast Mg-6 wt% Ni alloy was investigated. Morphology and microstructure of the cast sample and achieved powders were evaluated by high-resolution scanning electron microscopy. The activation characteristics of ball-milled alloy are compared with those of the materials obtained by ball-milling of 5 wt% multi-walled carbon nanotubes (MWCNTs) for 2 hours. MWCNTs enhanced the absorption kinetics considerably. The hydrogen content of modified powder by MWCNTs reached to the maximum hydrogen capacity within two minutes of exposure to hydrogen at 370°C and 2MPa pressure. The evidence is provided that nucleation and growth of hydrides accelerate drastically by homogenously distribution of MWCNTs on the surface of ball-milled powders.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2843-2846

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Y. Song, C.D. Yim, J.S. Bae, D.R. Mumm, and S.H. Hong: J Alloys Compd., Vol. (2008), pp.143-147.

Google Scholar

[2] G. Liang, S. Boily, J. Huot, A. Van Neste, and R. Schulz: J Alloys Compd., Vol. (1998), pp.302-307.

Google Scholar

[3] L. Zaluski, A. Zaluska, and J.O. Strom-Olsen: J Alloys Compd., Vol. (1995), pp.245-249.

Google Scholar

[4] A. Zaluska, L. Zaluski, and J.O. Stro¨m-Olsen: J Alloys Compd., Vol. (1999), pp.197-206.

Google Scholar

[5] G. Liang, E. Wang, and S. Fang: J Alloys Compd., Vol. (1995), pp.111-114.

Google Scholar

[6] S. Suda, Y.M. Sun, B.H. Liu, Y. Zhou, S. Morimitsu, K. Arai, N. Tsukamoto, M. Uchida, Y. Candra, and Z.P. Li: Appl. Phys. A: Mater. Sci. Process., Vol. (2001), pp.209-212.

DOI: 10.1007/s003390100785

Google Scholar

[7] H. Imamura, N. Sakasai, and T. Fujinaga: J Alloys Compd., Vol. (1997), pp.34-37.

Google Scholar

[8] H. Imamura and N. Sakasai: J Alloys Compd., Vol. (1995), pp.810-814.

Google Scholar

[9] H. Imamura, N. Sakasai, and Y. Kajii: J Alloys Compd., Vol. (1996), pp.218-223.

Google Scholar

[10] Y. Luo, P. Wang, L.P. Ma, and H.M. Cheng: Scr. Mater., Vol. (2007), pp.765-768.

Google Scholar

[11] B. Amirkhiz, M. Danaie, and D. Mitlin: Nanotechnology, Vol. (2009), p.204016 (13pp).

Google Scholar

[12] C.Z. Wu, P. Wang, X. Yao, C. Liu, D.M. Chen, G.Q. Lu, and H.M. Cheng: J Alloys Compd., Vol. (2006), pp.278-282.

Google Scholar

[13] Y. Cho and A. Dahle: Materials and Austceram, 1-3 July 2009. Gold Coast, Australia.

Google Scholar

[14] S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, and R. Schulz: J Alloys Compd., Vol. (2001), pp.245-251.

Google Scholar

[15] S. Bouaricha, J.P. Dodelet, and D. Guaya: J. Mater. Res., Vol. (2001), pp.2893-2905.

Google Scholar