Rare Earth Element Aliovalent Doping Substitution and Electrochemical Performance of LiFe1-x NdxPO4

Article Preview

Abstract:

LiFe1-xNdxPO4 /C cathode material has been synthesized by solid-state reaction. The structure and electrochemical performances of LiFe1-xNdxPO4 /C(x = 0 - 0.08) have been studied by XRD, FE-SEM, EIS and galvanostatic charge-discharge. The magnetization curve of LiFe1-xNdxPO4/C sample is measured by SQUID (Superconducting Quantum Interference Device) to examine if Fe3+ ion exists in LiFe1-xNdxPO4/C. The results show that a small amount of aliovalent Nd3+-dopant substitution on Fe+2 can effectively reduce the particle size of LiFePO4/C. The cell parameters of LiFe1-xNdxPO4 (x = 0.04 - 0.08) are calculated on Si internal standard, and LiFe1-xNdxPO4/C has the same olivine structure as LiFePO4, and delivers the highest discharge capacity of 165.2 mAh•g−1 at 0.2 C rate and the capacity retention rate is 92.8 % after 100 cycles. The charge transfer resistance decreases with adding glucose and Nd3+ ion. The measured theoretical capacity of 168.65 mAh∙g-1 is obtained. All the results imply that aliovalent doping substitution on Fe site in LiFePO4 is tolerant.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2883-2886

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yamada A, Chung S C, Kinokuma K, J. Electrechem Soc, 2001, 148(3): A224-A229.

Google Scholar

[2] Zhaohui C, J. Electrochem. Soc., 2002, 149(9): A1184-1189.

Google Scholar

[3] Tang Zhiyuan, Ruan Yanli. Acta Chimica Sinica, 2005, 63(16): 1500-1506.

Google Scholar

[4] Chung S Y, Jason T B, Chiang Y M, Nature Materials, 2002, l (2): 123-128.

Google Scholar

[5] S-H. Wu, M. -S Chen, C-J Chien, Yen-Pei Fu, J. Power Sources, 2009, 189: 440-444.

Google Scholar

[6] Hu Jie-Zi, Xie Jian, Zhao Xin-Bing, et al., J. Mater. Sci. Technol., 2009, 25(3): 405-409.

Google Scholar

[7] J. Liu, J. Wang, X. Yan et al., Electrochimica Acta, 2009, 54: 5656-5659.

Google Scholar

[8] X. Yan, G. Yang, J. Liu, Y. Ge. et al, Electrochimica Acta, 2009, 54: 5770-5774.

Google Scholar

[9] Haowen Liu, Hanmin Yang, Jinlin Li, Electrochimica Acta, 2009, on line.

Google Scholar

[10] B. Kang, G. Ceder, Nature, 2009, 458: 190-193.

Google Scholar

[11] M. Saiful Islam, Daniel J. Driscoll, et al., Chem. Mater, 2005, 17: 5085-5092.

Google Scholar

[12] Zhang Li, Zhao M. S, Wang D. D, et al, Chinese J. of Inorg. Chem., 2009, 25(10)1724-1728.

Google Scholar

[13] K. Zaghib, N. Ravet, M. Gauthier, et a1. J. Power Sources, 2006, 163: 560-566.

Google Scholar

[14] S. Y. Chung, T. B. Jason, Y. M. Chiang, Nature Materials, 2002, l (2): 123-128. 0 500 1000 1500 2000 2500 3000 0 -200 -400 -600 -800 -1000 LiFePO4 LiFePO4/C LiFe0. 94Nd0. 06PO4/C - Z'/(Ω ) Z, /(Ω ) 0. 00 0. 02 0. 04 0. 06 0. 08 0. 10 165. 0 165. 5 166. 0 166. 5 167. 0 167. 5 168. 0 168. 5 169. 0 169. 5 170. 0 Discharge cpacity/mAh. g-1 Discharge rate/C x=0. 06.

Google Scholar