Grain Refinement of Magnesium Alloy AZ31 under Torsion Extrusion with a Square-Hole Die

Article Preview

Abstract:

Grain refinement and crystal orientation of magnesium alloy AZ31 under torsion extrusion with a square-hole die are investigated. The optimum temperature and ratio of the die rotation speed to the extrusion speed were clarified, resulting in uniformly distributed fine grains with sizes in the range 1- m over the entire cross section of the worked specimen. The crystal orientation of the specimen was determined by electron backscatter diffraction and compared with that of a conventionally extruded specimen. In the case of torsion extrusion, a very strong <0001> texture was observed along the extrusion axis, especially in the center region of the cross section. In contrast, the <0001> direction of many grains in the conventionally extruded specimen tended to be perpendicular to the extrusion axis.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

711-714

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Valiev R.Z., Krasilnikov N.A. and Tsenev N.K.: Mat. Sci. and Eng., A137 (1991) 35-40.

Google Scholar

[2] Segal V. M.: Mat. Sci. and Eng., A197 (1995) 157-164.

Google Scholar

[3] Saito Y., Utsunomiya H., Tsuji N. and Sakai T.: Acta Mater., 47 (1999) 579-583.

Google Scholar

[4] Korbel A. and Bochniak W.: US Patent 5737959 (Filed Apr. 7, 1996).

Google Scholar

[5] Korbel A. and Bochniak W.: Scripta Materialia 51 (2004) 755-759.

Google Scholar

[6] Beygelzimer Y., Orlov D. and Varyukhin V.: Proc. of TMS Annual Meeting in Seattle, WA. Feb. 17-21, 2002, 297-304.

Google Scholar

[7] Brovman M.J. : Int. J. Mech. Sci. 27 (1987), 483-489.

Google Scholar

[8] Sergeev M.K.; Kuznecino Stampovocinoe Proizvodstvo 1991; (9): 5-6.

Google Scholar

[9] Korbel A. and Bochniak W.: PL-295057 (Filed Apr. 7, 1996).

Google Scholar

[10] Mizunuma S.: JP. 4305151 (Filed Oct. 30, 2003).

Google Scholar

[11] Segal V.M.: US Patent 20050081594 (Filed Aug. 27, 2004).

Google Scholar

[12] Mizunuma S.: Proc. of 8th International Conference on Technology of Plasticity (ICTP), Verona, 2005 (CD-ROM).

Google Scholar

[13] Mizunuma S.: Materials Science Forum, 503-504 (2006) 185-190.

Google Scholar

[14] Chino Y., Sassa K., Mabuchi M. : Scripta Materialia, 59 (2008), 399-402.

DOI: 10.1016/j.scriptamat.2008.04.013

Google Scholar

[15] Ma X., Barnett M.R. and Kim Y.H.: Int. J. of Mech. Sci. 46 (2004) 449-464.

Google Scholar

[16] Ma X., Barnett M.R. and Kim Y.H.: Int. J. of Mech. Sci. 46 (2004) 465-489.

Google Scholar

[17] Derby D.: Acta. Metall. Mater. 39 (1991) 955-962.

Google Scholar

[18] Watanabe H. et al.: Materials Transactions, 42-7 (2001) 1200-1205.

Google Scholar