A Novel Single-Site Catalyst for Olefin Polymerization

Article Preview

Abstract:

A novel single-site catalyst was prepared from N-pheneyldiethanolamine and titanium tetrachloride and characterized using spectroscopic methods such as Nuclear Magnetic Resonance (NMR) spectroscopy and Infra Red (IR) spectroscopy. It was prepared insitu and used to polymerize ethylene along with methylaluminoxane (MAO) as co-catalyst. The turnover frequency for ethylene polymerization was found to be 350 g and 550g polymer/mol catalyst/h for 1 bar and at 2 bar respectively. As the turn over frequency at the studied reaction conditions is good, the present N-pheneyldiethanolamine-based catalyst is a good single-site catalyst for olefin polymerization

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-87

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.J.P. Britovsek, V.C. Gibson and D.F. Wass: Angew. Chem., Int. Edn. Engl. Vol. 38 (1999), p.428.

Google Scholar

[2] W. Kaminsky: J. Chem. Soc. Dalton Trans. Vol. (1998), p.1413.

Google Scholar

[3] A.A. Montagna, A.H. Dekmazian and R.M. Brukhart: Chemtech. (1997), p.26.

Google Scholar

[4] D. Pappalardo, M. Mazzeo, S. Antinucci and C. Pellecchia: Macromolecules Vol. 33 (2000), p.9483.

Google Scholar

[5] R. Manivanan and G. Sundararajan: Macromolecules Vol. 35 (2002), p.7883.

Google Scholar

[6] M.B. Harney, R.J. Keaten and L.R. Sita: J. Am. Chem. Soc. Vol. 126 (2004), p.4536.

Google Scholar

[7] E.Y. Tshuva, S. Groysman, I. Goldberg, M. Kol and Z. Goldschmidt: Organomettalics Vol. 21 (2002), p.662.

Google Scholar

[8] S. Groysman, I. Goldberg, M. Kol, E. Genizi and Z. Goldschmidt: Organomettalics Vol. 22 (2003), p.3013.

Google Scholar

[9] S. Segal, I. Goldberg and M. Kol: Organomettalics Vol. 24 (2005), p.200.

Google Scholar

[10] H.D. Scollard and D.H. McConville: J. Am. Chem. Soc. Vol. 118 (1996), p.10008.

Google Scholar

[11] G.W. Coates, P.D. Hustad and S. Reinartz: Angew. Chem., Int. Edn. Vol. 41 (2002), p.2236.

Google Scholar

[12] P. Mehrkhodavandi, R.R. Schrock and L.L. Pryor: Organometalics Vol. 22 (2003), p.4569.

Google Scholar

[13] F. Heatley, F.S. Mair, R.G. Pritchard and R.J. Woods: J. Organomet. Chem. Vol. 690 (2005), p. (2078).

Google Scholar

[14] P. Corradini, G. Guerra and L. Cavallo: Acc. Chem. Res. Vol. 37 (2004), p.231.

Google Scholar

[15] M. Schmid, R. Eberhardt, M. Klinga, M. Leskela and B. Rieger: Organomettalics Vol. 20 (2001), p.2321.

Google Scholar

[16] B.D. Ward, S. Bellemin-Lapponaz and L.H. Gade: Angew. Chem., Int. Ed. Vol. 44 (2005), p.1668.

Google Scholar

[17] R. Mannivannan, G. Sundararajan and W. Kaminsky: Macromol. Rapid Commun. Vol. 21 (2000), p.968.

Google Scholar