Fabrication of Lotus-Type Porous Iron by Thermal Decomposition Method

Article Preview

Abstract:

Lotus-type porous iron was fabricated by continuous zone melting technique through thermal decomposition of chromium nitride(Cr1.18N). Nitrogen dissolves into the molten iron through thermal decomposition of Cr1.18N. When the molten iron is solidified in one direction, insoluble nitrogen forms the directional gas pores aligned along the solidification direction. The porosity increases with increasing transfer velocity. For most of lotus metals fabricated by pressurized gas method, the porosity does not change with the transfer velocity owing to constant gas solubility in liquid and solid phase. On the other hand, the porosity of lotus metal fabricated by thermal decomposition method depends on the transfer velocity. This difference is attributed to the decomposition behavior of gas compound dependent upon the heating rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-243

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Banhart: Progr. Mater. Sci., 2001, vol. 46, p.559.

Google Scholar

[2] H. Nakajima: Progr. Mater. Sci., 2007, vol. 52, p.1091.

Google Scholar

[3] V. Shapovalov: Proc. MRS Symp., 1998, vol. 52, p.281.

Google Scholar

[4] A. Makaya and H. Fredriksson: Mater. Sci. Eng. A, 2005, vol. A413-414, p.533.

Google Scholar

[5] T. Ide, M. Tane, T. Ikeda, S. K. Hyun and H. Nakajima: J. Mater. Res., 2006, vol. 21, p.185.

Google Scholar

[6] S. K. Hyun, K. Murakami and H. Nakajima: Mater. Sci. Eng., 2001, vol. 299, p.241.

Google Scholar

[7] H. Nakajima and T. Ide: Metall. Mater. Trans. A., 2008, vol. 39A, p.390.

Google Scholar

[8] T. Ide and H. Nakajima: J. Phys. Conf. Ser., 2009, vol. 165, p.12064.

Google Scholar

[9] S.Y. Kim, J.S. Park and H. Nakajima: Metall. Mater. Trans. A., 2009, vol. 40A, p.937.

Google Scholar

[10] T. Ikeda, T. Aoki and H. Nakajima: Metall. Mater. Trans., 2005, vol. 36A, p.77.

Google Scholar

[11] J. S. Park, S. K. Hyun, S. Suzuki and H. Nakajima: Acta. Mater., 2007, vol. 55, p.5646.

Google Scholar

[12] Y. S. Touloukian and E. H. Buyco: Specific Heat, IFI/Plenum, New York-Washington, 1970, p.102.

Google Scholar

[13] Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klements: Thermal Conductivity, IFI/Plenum, New York-Washington, 1970, p.156.

Google Scholar

[14] H. E. Kissinger: Anal. Chem., 1957, vol. 29, p.1702.

Google Scholar