Effect of Texture on Hydrogen Permeability in Low Carbon Al-Killed Steels

Article Preview

Abstract:

The susceptibility to fish-scale formation of cold rolled Al-killed low carbon enamel grade steel sheets is mainly determined by the hydrogen permeability. The role of the grain orientation in the hydrogen permeation time was investigated using scanning electron microscope based electron backscatter diffraction measurements. The fragmentations of massive cementite phase have a significant influence not only on the hydrogen permeability but also on the evolution of texture during the cold rolling process. Results showed that {111}[uvw] texture act as trapping site for hydrogen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-306

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. G. Nelson: Treatise on Materials Science and Technology, Academic Press, New York, 1983, Vol. 25, p.275.

Google Scholar

[2] N. Eliaz, A. Shachar, B. Tal., D. Eliezer: Engineering Failure Analysis 9, 2002, p.167.

Google Scholar

[3] R. A. Oriani, J. P. Hirth, and M. Smialowski: Hydrogen Degradation of Ferrous Alloys (Noyes Publications, Park Ridge, NJ, (1985).

DOI: 10.1557/s0883769400069670

Google Scholar

[4] Pressouyre, G. M., Bernstein I.: M. Met . Trans. 1981A 12A(5): 835-844.

Google Scholar

[5] J. C. J. McMahon: Innovations in Ultrahigh-Strength Steels, Proceedings of the 34th Sagamore Army Materials Research Conference, Washington, DC, 1990, p.597.

Google Scholar

[6] H. J. Grabke, E. Riecke: Mater. Technol. 34, 331 (2000).

Google Scholar

[7] A. San-Martin and F. D. Manchester, Phase Diagrams of Binary Iron Alloys, edited by H. Okamoto (ASM International, Materials Park, OH, 1993), p.161.

Google Scholar

[8] Industrial standard MSzEN 10209: (2000).

Google Scholar

[9] E.R. Fábián, B. Verő: XXI. International Enamellers Congress, 2008, pp.294-304.

Google Scholar

[10] K. Kiuchi , R. B Mc Lellan: Perspectives of Hydrogen in Metals, Pergamon Press; 1990, 49.

Google Scholar

[11] D. E. Jiang and Emily A. Carter: Phisical Review B, 70, 2004, 064102-5.

Google Scholar

[12] J.I. Verdeja, J. Asensio, and J.A. Pero-Sanz: Mater. Charact., 2003, vol. 50, pp.81-86.

Google Scholar

[13] T. Ungár, J. Gubicza, P. Hanák, I. Alexandrov: Mat. Sci. and Eng. A319-321 (2001) 274-278.

Google Scholar

[14] E. R. Fábián, L. Dévényi: Materials Science, Testing and Informatics; 2006 pp.33-40.

Google Scholar

[15] B. Marandet: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (ed. R.W. Staehle et al) National Association of Corrosion Engineers, Houston, 1977, pp.775-787.

Google Scholar

[16] H. Huang and W.J.D.: Shaw Corrosion Science, Vol. 51, 1995, No. 1, p.32.

Google Scholar

[17] A. J. Kumnick and H. H. Johnson: Acta Met. Vol. 28, 1980 p.33.

Google Scholar

[18] M. Martinez-Madrid, S.L. I Chan, J.A. Charles: Mat. Sci. and Tech., VI., 1985/p.459.

Google Scholar