On the Relation between the Matensite Start Stress and the Temperature in Single Crystalline Cu-11.5wt%Al-5.0wt%Ni Shape Memory Alloy

Article Preview

Abstract:

General form of the well known-relation between the critical stress, necessary to start/finish martensite/austenite formation, and the test temperature is simply and plausibly obtained from our local equilibrium model of phase transformation [1], and compared to the classical forms of the Clausius-Clapeyron relation. Although in general, first of all because of the stress and temperature dependence of the transformation strain, εtr, the above relations are not inevitably linear, in most of the cases linear functions were observed. Using the results of our experiments carried out on single crystalline Cu-11.5wt%Al-5.0wt%Ni samples for the strain stress hysteretic loops at constant temperatures [2], the slopes of these functions are analyzed on the basis of the relations obtained and it is shown that these are different due to different stress dependence of the elastic energy contributions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-404

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.L. Beke, L. Daróczi, Z. Palánki, Proc. of Int. Conf. on Shape Memory and Superleastic Technologies, 2007 Tsukuba, Japan, edited by S. Miyazaki (ASM International, Materials Park, Ohio, 2008) p.607.

Google Scholar

[2] T.Y. El Rasasi, L. Daróczi, D.L. Beke, Intermetallics, submitted for publication.

Google Scholar

[3] A. Planes, T. Castan, J. Ortin, L. Delay, J Appl Phys 66(6), 2342 (1989).

Google Scholar

[4] K. Tanaka, Res. Mech. 18, 251 (1986).

Google Scholar

[5] J. Van Humbeck and R. Stalmans, in K. Otsuka and C. M. Wayman (editors): Shape memory materials, Cambridge, Cambridge University Press, 1998, p.151.

Google Scholar

[6] S. Leclercq and C. Lexcellent, J. Mech. Phys. Solids, 44(6), 953 (1996).

Google Scholar

[7] C. Lexcellent, M.L. Boubakar, Ch. Bouvet, S. Calloch, Int. J. of Sol. and Struct. 43, 613 (2006).

Google Scholar

[8] Z. Palánki, L. Daróczi, C. Lexcellent, D.L. Beke, Acta Mater 55, 1823 (2007).

Google Scholar

[9] Z. Palánki, L. Daróczi, D.L. Beke, Mater. Trans. A46, 978 (2005).

Google Scholar

[10] L. Daróczi, Z. Palánki, S. Szabó, D. L. Beke, Material Sci. and Eng. A378, 274 (2004).

Google Scholar

[11] J. Rodriguez-Aseguinoza, I. Ruiz-Larrea, M.L. No, A. Lopez-Echarri, J. San Juan, Acta Mater 56, 6283 (2008).

Google Scholar

[12] D.L. Beke, T.Y. El Rasasi, L. Daróczi, Proc. of ESOMAT-2009, DOI: 10. 1051/esomat/200902002, http: /dx. doi. org/10. 1051/esomat/200902002.

DOI: 10.1051/esomat/200902002

Google Scholar

[13] L. Delaey, Diffusionless transformations" in R. W Cahn, P. Haasen and E.J. Kramer (editors) Materials Science and Technology - A Comprehensive Treatment, Vol. 5. P. Haasen (ed. ) Phase Transformations in Materials, (Weinheim, VCH, 1991) p.339.

DOI: 10.1002/ange.19931050142

Google Scholar

[14] H. Kato and S. Miura, Acta metall. Mater., 1995; 43(1): 351-360.

Google Scholar