New Integrated Cermet Powder Preparation and Consolidation Method–Ni-ZrO2 Case

Article Preview

Abstract:

A new integrated method for direct preparation of cermet materials is proposed consisting of a powder processing method allied to a special sintering step. The powder is obtained by mechanical alloying route where a specific morphologic design is searched to yield thin metal plated ceramic particles. These have the proper characteristics to engage the sintering by activated surface (SAS) consolidation method. The last is triggered by partial evaporation and reactive sintering of thin metal layers, therefore exposing high active surfaces with superior sinterability. Refractory sacrifice metal components are found to play an important role. The application of the integrated method to Ni-ZrO2 cermet with selected metal additives is investigated. Sintering temperatures can be reduced by more than 300°C for the same final density range. The resulted powders and pellets microstructures are analysed accordingly to the projected expected ones. The thermophysical and electrical properties measurements are performed for evaluate phases percolation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

370-376

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Atkinson, et al.: Nature Materials Vol 3 (1) (2004), p.17.

Google Scholar

[2] N.Q. Minh: J. Am. Ceram. Soc. Vol. 76 (3) (1993), p.563.

Google Scholar

[3] J.D. Holladay et al.: Catalysis Today Vol. 139 (2009), p.244.

Google Scholar

[4] R. Hino et al.: Nuclear Engineering and Design Vol. 233 (2004), p.363.

Google Scholar

[5] H. S. Hong, U. Chae and S. Choo: Journal of Alloys and Compounds Vol. 449, (2008), p.331.

Google Scholar

[6] Kyoung-Hoon Kang, et al.: Journal of Alloys and Compounds Vol. 448 (2008), p.363.

Google Scholar

[7] H.S. Hong, et al.: Journal of Power Sources Vol. 149 (2005), p.84.

Google Scholar

[8] H.S. Hong et al.: Materials Science Forum Vols. 486-487 (2005), p.662.

Google Scholar

[9] S. Lee et al.: J. Alloys Compd. (2007), doi: 10. 1016/j. jallcom. 2007. 08. 022.

Google Scholar

[10] R. Wilkenhoener: Journal of Materials Science Vol. 34 (1999), p.257.

Google Scholar

[11] H. J. Cho and G. M. Choi: Journal of Power Sources Vol. 176 (2008), p.96.

Google Scholar

[12] T.A.G. Restivo and S.R.H. Mello-Castanho: Journal of Power Sources Vol. 185 (2008), p.1262.

Google Scholar

[13] T.A.G. Restivo; S.R.H. Mello-Castanho. Materials Science Forum Vol. 591-593 (2008), p.514.

Google Scholar

[14] M.D. Gross, J.M. Vohs and R.J. Gorte. Electrochmica Acta Vol. 52 (5) (2007), p. (1951).

Google Scholar

[15] C. Sun and U.J. Stimming: Power Sources (2007), oi: 10. 1016/j. jpowsour. 2007. 06. 086.

Google Scholar

[16] Y. Fukai: The Metal-Hydrogen System. (Springer, 1993).

Google Scholar

[17] T.A.G. Restivo: Doutorado (Tese) São Paulo 2003. IPEN/USP/SP.

Google Scholar

[18] T.A.G. Restivo and J.D.T. Capocchi: J. Nuclear Materials Vol. 334 ( (2004), p.189.

Google Scholar

[19] O. T. Sorensen: J. Thermal Analysis Vol. 38 (1992), p.213.

Google Scholar

[20] P. L. Husum and O. T. Sorensen: Thermochimica Acta Vol. 114 (1987), p.131.

Google Scholar

[21] C. C. Guedes e Silva, F.M.S. Carvalho and T.A.G. Restivo: Estudo dos Mecanismos de Difusão em Cerâmicas a Base de Alumina. In: 14ª CBECIMAT, São Pedro, SP, (2000).

Google Scholar

[22] T.A.G. Restivo and L. Pagano Jr.: Sintering studies on the UO2. Gd2O3 system using SID method, In: Conference on Characterization and Quality Control of Nuclear Fuels 2002. Proceeding.. Hyderabad, India, (2003).

Google Scholar

[23] T.A.G. Restivo and L. Pagano Jr. Effect of Additives on The Sintering Kinetics of The UO2. Gd2O3 System, In: TCM Brussels, (2003).

Google Scholar

[24] M. El Sayed Ali and O.T. Sorensen: Riso-R- Vol. 518 (1985), p.12.

Google Scholar

[25] H. Wang, O.T. Sorensen et al.: J. Am. Ceram. Soc. Vol. 81 (3) (1998), p.781.

Google Scholar

[26] O. Bellon: Dilatometric Sintering Studies of Zirconia Toughened Ceramics. Ecole Nationale Superieure de Ceramiques Industrielles. Risoe National Laboratory. (1991).

Google Scholar

[27] R. Yan et al.: Materials Letters Vol. 60 (2006), p.3605.

Google Scholar

[28] T.A.G. Restivo: Final Technical Report - code C6/BRA0030/P. Vienna: IAEA, (2001).

Google Scholar

[29] O. Kubaschewski, C.B. Alcock, P.J. Spencer. Materials Thermo-Chemistry, 6th Ed., Pergamon, (1993).

Google Scholar