Optical and Transport Properties of as Prepared and Annealed Te-Substituted Sn-Sb-Se Thin Films

Article Preview

Abstract:

Thin films of Sn10Sb20Se70-XTeX (0≤X≤8) composition were deposited using thermal evaporation technique. As-prepared films were amorphous as studied by X-ray diffraction. Surface morphology studies revealed that films have surface roughness ~2 nm and av. grain size ~ 30 nm. Optical band gap Eg calculated from transmittance and reflectance data showed a sharp decrease for initial substitution of Se with Te upto 2 at%. Further substitution upto 4 at%, lead to a small increase in Eg value and thereafter it marginally decreased for further substitution beyond 4at%. The trend of optical band gap variation with tellurium content has been qualitatively explained using band model given by Kastner. The dc-conductivity measurements showed thermally activated conduction with single activation energy for the measured temperature regime and followed Mayer-Neldel rule. The dc-activation energy has nearly half the value as that of optical band gap that revealed the intrinsic nature of semiconductor. The annealing below glass transition Tg led to decrease in optical band gap as well as dc-activation energy that might be related to increase of disorder in material with annealing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

16-24

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Wuttig and N. Yamada: Nature materials Vol. 6 (2007), p.824.

Google Scholar

[2] S. R. Elliot: Physics of Amorphous Materials (Longman publications, London, 1991).

Google Scholar

[3] J. M. Harbold, F. O. Ilday , F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw and I. D. Aggarwal: Opt. Lett. Vol. 27 (2002), p.119.

DOI: 10.1364/ol.27.000119

Google Scholar

[4] M. Asobe: Opt. Fiber Technol. Vol. 3 (1997), p.142.

Google Scholar

[5] S. O. Kasap, T. Wagner, V. Aiyah, O. Krylouk, A. Bekirov and L. Tichy: J. Mater. Sci. Vol. 34 (1999), p.3779.

DOI: 10.1023/a:1004644631338

Google Scholar

[6] S.A. Khan, M. Zulfequar and M. Husain: Solid state commun. Vol. 123 (2002), p.463.

Google Scholar

[7] M. Saito and K. Kikuchi: optical review Vol. 4 (1997), p.527.

Google Scholar

[8] A.V. Kolobov and J. Tominaga: J. Mater Sci: Mater electron. Vol. 14 (2003), p.677.

Google Scholar

[9] J.C. Phillips: J. Non-Cryst. Solids Vol. 34 (1979), p.153.

Google Scholar

[10] M. F. Thorpe: J. Non-Cryst. Solids Vol. 57 (1983), p.355.

Google Scholar

[11] G. Lucovsky, F. L. Gleener, R. H. Geils, R. C. Keezer, in: The Structure of Non Cryst. Materials, edited by P.H. Gaskel, Taylor and Francis, London, p.127.

Google Scholar

[12] K. Ramesh, S. Asokan, K. S. Sangunni and E. S. R. Gopal: J. Phys and Chem. Solids Vol. 61 (2000), p.95.

Google Scholar

[13] V. Pandey, S.K. Tripathi and A. Kumar: Physica B Vol. 388 (2007), p.200.

Google Scholar

[14] R. Chander and R. Thangaraj: Appl. Phys A Vol. 99 (2010), p.181.

Google Scholar

[15] M. Abkowitz: Polym. Eng. Sci. Vol. 24 (1984), p.1149.

Google Scholar

[16] J. Tauc: The optical properties of solids (Amsterdam, North-Holland 1974).

Google Scholar

[17] R. Urbach: Phys. Rev. Vol. 92 (1953), p.1324.

Google Scholar

[18] R. Chander and R. Thangaraj: Eur. Phys. J. Appl. Phys. Vol. 48 (2009), p.10302.

Google Scholar

[19] M. Kastner: Phys. Rev. Lett. Vol. 28 (1972), p.355.

Google Scholar

[20] R. Swanepoel: J. Phys. E: Sci. Instrum. Vol. 16 (1983), P. 1214.

Google Scholar

[21] S. H. Wemple and M. DiDomenico: Phys. Rev. B Vol. 3 (1971), p.1338.

Google Scholar

[22] N. F. Mott and E. Davis: Electronic Properties of Non-Crystalline Materials (Oxford publication, Clarendon 1979).

Google Scholar

[23] K. Shimakawa and F.A. Waheb: Appl. Phys. Lett. Vol. 70 (1997), p.652.

Google Scholar

[24] S. K. Dwivedi, M. Dixit and A. Kumar: J. Mater. Sci. Letters Vol. 17 (1998), p.233.

Google Scholar

[25] H. Overhof and P. Thomas in: Electronic Transport in Hydrogenated Amorphous Semiconductors (Springer, Berlin, 1989).

Google Scholar

[26] G. Kemeny and B. Rosenberg: J. Chem. Phys. Vol. 52 (1970), p.4151.

Google Scholar

[27] G. G. Roberts: J. Phys. C Vol. 4 (1971), p.3167.

Google Scholar

[28] Y. Kuzukawa, A. Ganjoo and K. Shimakawa: J. Non-Cryst Solids Vol. 227/230 (1998), p.715.

Google Scholar

[29] A. A. Abu-sehly and M. I. Abd-Elrahman: J. Phys. Chem. Solids Vol. 63 (2002), p.163.

Google Scholar

[30] A. S. Soltan: Appl. Phys. A Vol. 80 (2005), p.117.

Google Scholar