In Situ Preparation of TiO2 Composite Layer upon Ti Alloy Substrate Using Micro-Arc Oxidation and its Photocatalytic Property

Article Preview

Abstract:

In this paper, a micro-arc oxidation (MAO) approach is introduced for “in-situ” preparing TiO2 composite layer upon the surface of titanium alloy (Ti-6Al-4V) substrate. The surface morphologies, chemical compositions, crystal microstructure and photocatalytic properties of the layers were investigated by using a field emission scanning electron microscope (FE-SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electro-chemical workstation and UV-Vis spectrophotometer. The experimental results revealed that photocatalytic performance of the TiO2 composite layers was much higher than that of the pure TiO2 layer and also exhibited absorption under the visible light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

3-11

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima and K. Honda: Nature Vol. 238 (1972), p.37.

Google Scholar

[2] S. Grayer and M. J. Halman: Electroanal Chem. Vol. 170 (1984), p.363.

Google Scholar

[3] L.M. Williams and D.W. Hess: J. Vasc. Sci. Technol. Vol. A1 (1983), p.1810.

Google Scholar

[4] H. Tang, F. Levy, H. Berger and P.E. Schmid: Phys. Rev. Vol. B52 (1995), p.7771.

Google Scholar

[5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science Vol. 293 (2001), p.269.

Google Scholar

[6] Y. Han, D.H. Chen and L. Zhang: Nanotechnology Vol. 19 (2008), p.335705.

Google Scholar

[7] F.D. Fonzo, C.S. Casari, V. Russo, M.F. Brumella and A.L. Bassi: Nanotechnology Vol. 20 (2009), p.015604.

Google Scholar

[8] L. Wan, J.F. Li, J.Y. Feng, W. Sun and Z.Q. Mao: Chinese Journal of Chemical Physics Vol. 21 (2008), p.487.

Google Scholar

[9] K.Y. Jung and S.B. Park: Appl. Catal. B-Environ. Vol. 25 (2000), p.249.

Google Scholar

[10] L.Y. Shi, H.C. Gu and C.Z. Li: Chin. J. Catal. Vol. 20 (1999), p.338.

Google Scholar

[11] W. Xue, Z. Deng, Y. Lai and R. Chen: J. Am. Ceram. Vol. Soc. 815 (1998), p.1365.

Google Scholar

[12] S. Ikonopisov: Electrochim. Vol. Acta 22 (1977), p.107.

Google Scholar

[13] A.L. Yerokhin, A.A. Voevodin, V.V. Lyubimov, J. Zabinski, and M. Donley: Surf. Coat Technol. Vol. 110 (1998), p.140.

Google Scholar

[14] Y.Z. Gao, L. Yan, S.F. Zhang, S. Liu and S.J. Ji: China Surf. Eng. Vol. 6 (2003), p.35.

Google Scholar

[15] Y.K. Lee: Mod. Phys. Lett. B. Vol. 23 (2009), p. (2035).

Google Scholar

[16] A.L. Yerokhin, A. Leyland and A. Matthews: Applied Surface Science Vol. 200 (2002), p.172.

Google Scholar

[17] W. Krysmann, P. Kurze, K.H. Dittrich and H.G. Schneider: Crystal Research and Technology Vol. 19 (1984), p.973.

Google Scholar

[18] Y.H. Zhou, J. Lin, M. Yu, S.B. Wang and H.J. Zhang: Materials Letters Vol. 56 (2002), p.628.

Google Scholar

[19] T.L. Thompson and J.T. Yates: Chemical Reviews. Vol. 106 (2006), p.4428.

Google Scholar

[20] G. L. Yang, X.Y. Lv, Y.Z. Bai, H.F. Cui, and Z.S. Jin: J. Alloys and Compounds Vol. 345 (2002), p.196.

Google Scholar