Synthesis and Luminescent Properties of Violet-Ultraviolet Long Afterglow Phosphors

Article Preview

Abstract:

The M1.99MgSi2O7: Ce3+0.01 (M: Ba, Sr, Ca) phosphors were prepared by the solid-state reaction method. All the samples emit the violet-ultraviolet light with a broad emission band from about 330 nm to 500 nm. All the phosphors samples show a long afterglow. The strongest afterglow intensity and the longest decay duration of the afterglow come from the Ca1.99MgSi2O7: Ce3+0.01 sample. It is attributed to the suitable trap depth and the high trap concentration of this sample. The traps of these phosphors are induced by the lattice defects. A suitable model involving the cation vacancies and the oxygen vacancies, which act as the hole traps and the electron traps respectively, is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

170-176

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Chen, B. Liu, M. Kirm, Z. Qi, C. Shi, M. True, S. Vielhauer and G. Zimmerer: J. Lumin. Vol. 118 (2006), p.70.

Google Scholar

[2] Y. Chen, X. Cheng, M. Liu, Z. Qi and C. Shi: J. Lumin. Vol. 129 (2009), p.531.

Google Scholar

[3] Y. Murayama, N. Takeuchi, Y. Aoki and T. Matsuzawa: US. Patent. No. 5 424 006 (1995).

Google Scholar

[4] Z. Xiao and Z. Xiao: US. Patent. No. 6 093 346 (2000).

Google Scholar

[5] Q. Fei, C. Chang and D. Mao: J. Alloys Compd. Vol. 390 (2005), p.133.

Google Scholar

[6] A.A.S. Alvani, F. Moztarzadeh andA.A. Sarabi: J. Lumin. Vol. 114 (2005), p.131.

Google Scholar

[7] G.J. Alwar, C.P. Joshi, S. V Moharil, S.M. Dhopte, P.L. Muthal and V.K. Kondawar: J. Lumin. Vol. 129 (2009), p.1239.

Google Scholar

[8] H. Wu, Y. Wang, Y. Hu, L. Deng and W. Xie: J. Phys. D: Appl. Phys. Vol. 42 (2009), p.125406.

Google Scholar

[9] L. Lin, M. Yin, C. Shi and W. Zhang: J. Alloys Compd. Vol. 455 (2008), p.327.

Google Scholar

[10] A. Komero, K. Uematsu, K. Toda and M. Sato: J. Alloys Compd. Vol. 408-412 (2006), p.871.

Google Scholar

[11] P. Dorenbos: Phys. Rev. B Vol. 62 (2000), p.15640.

Google Scholar

[12] P. Dorenbos: Phys. Rev. B Vol. 62 (2000), p.15650.

Google Scholar

[13] R. Chen, Y. Wang, Y. Hu, Z. Hu and C. Liu: J. Lumin. Vol. 128 (2008), p.1180.

Google Scholar

[14] S.K. Sharma, S.S. Pitale, M.M. Malik, M.S. Qureshi and R.N. Dubey: J. Alloys Compd. Vol. 482 (2009), p.468.

Google Scholar

[15] H. Kubo, H. Aizawa, T. Katsumata, S. Komuro and T. Morikawa: J. Cryst. Growth Vol. 275 (2005), p. e1767.

Google Scholar

[16] P. Dorenbos: J. Electrochem. Soc. Vol. 152 (2005), p. H107.

Google Scholar

[17] Y. Wang and L. Wang: J. Appl. Phys. Vol. 101 (2007), 053108.

Google Scholar

[18] T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari and J. Niittykoski: J. Phys. Chem. B Vol. 110 (2006), p.4589.

Google Scholar

[19] H. Wu, Y. Hu, Y. Wang and Z. Mou: J. Lumin. Vol. 130 (2010), p.127.

Google Scholar

[20] R. Chen: J. Electrochem. Soc. Vol. 116 (1969), p.1254.

Google Scholar

[21] T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski and G. Spano: J. Alloys Compd. Vol. 374 (2004), p.56.

DOI: 10.1016/j.jallcom.2003.11.064

Google Scholar