Structure and Magnetic Properties of Fe-Doped TiO2 Nano-Crystals by Nonaqueous Synthesis

Article Preview

Abstract:

Ti1-xFexO2 nanocrystals with x = 0.01, 0.02, 0.03 were prepared via a nonaqueous synthesis route. X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy characterization confirmed the formation of anatase-phase nanocrystals with the average crystallite sizes of around 10 nm. The lattice constants alternate with the increase of the Fe content and no iron clusters were generated. X-ray photoelectron spectroscopy measurements showed that the substitutional Fe ions present mainly the valence of +3. The magnetic hysteresis loops measured at room temperature (RT) 300K showed that all the doped samples are atypically ferromagnetic, and the coercivity (Hc) of all the Fe-doping samples is around 0.1 T. An interpretation for the intrinsic RT ferromagnetism is put up based on the free carriers and defects induced interaction between Fe3+ ions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

883-889

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Linsebigler, G.Q. Lu and T. John: Yates, Chem. Rev. Vol. 95 (3) (1995), p.735.

Google Scholar

[2] R. Janisch, P. Gopal and N.A. Spaldin: J. Phys.: Condens. Matter. Vol. 17 (2005), p.657.

Google Scholar

[3] T. Dietl, Semicond: Sci. Technol. Vol. 17 (2002), p.377.

Google Scholar

[4] S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler and D.P. Norton: J. Appl. Phys. Vol. 93 (2003).

Google Scholar

[5] Y. Matsumoto, et al.: Science Vol. 291(2001), p.854.

Google Scholar

[6] I. Djerdj, D. Arcon, Z. Jaglicic and M. Niederberger : J Solid State Chem Vol. 181 (2008), p.1571.

Google Scholar

[7] F. Dong, W.R. Zhao and Z.B. Wu: Nanotechnology Vol. 19 (2008), p.365607.

Google Scholar

[8] N. Uekawa, Y. Kurashima, K. Kakegawa and Y. Sasaki: J. Mater. Res. Vol. 15 (2000), p.967.

Google Scholar

[9] P. Kacman, Semicond. Sci. Technol. Vol. 16 (2001), p.25.

Google Scholar

[10] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand: Science Vol. 287 (2000), p.1019.

Google Scholar

[11] F. Matsukura, H. Ohno, A. Shen and Y. Sugawara: Physical Review B Vol. 57 (1998), p.15.

Google Scholar

[12] S.D. Sarma, E.H. Hwang and A. Kaminski: Physical Review B Vol. 67 (2003), p.155201.

Google Scholar

[13] S. -R. Eric Yang and A.H. MacDonald: Physical Review B Vol. 67 (2003), p.155202.

Google Scholar

[14] P.A. Wolff, R.N. Bhatt and A.C. Durst: J. Appl. Phys. Vol. 79 (1996), p.15.

Google Scholar

[15] K. G. Roberts, M. Varela, S. Rashkeev, S.T. Pantelides, S.J. Pennycook, K. M. Krishnan: Physical Review B Vol. 78, p.014409.

Google Scholar

[16] S. -J. Cheng, Physical Review B Vol. 77 (2008), p.115310.

Google Scholar