Preliminary Positron Lifetime Results on Free Volumes in Cyclodextrins

Article Preview

Abstract:

Positron annihilation lifetime spectroscopy was used to study the free-volume parameters in various pure -, - and -cyclodextrins samples and, in the case of β-cyclodextrin, with inclusion of S-carvone and thymoquinone. The results clearly indicate the presence of long lifetime components related to Ps-formation. The data show that the addition of S-carvone to β-cyclodextrin results in a decrease of o-Ps lifetime that we ascribe to a reduction of free volume holes from 81.8 to 63.7 Å3. The long lifetime component disappears when thymoquinone is added to -cyclodextrin, indicating this substance acts as an o-Ps quencher. For all samples studied, a decrease in the long lifetime component values was observed with increasing source in situ time, a result that might be attributed to the irradiation of the sample by the 22Na positron source.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-102

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.M. Martin Del Valle: Process Biochemistry Vol. 39 (2004), p.1033.

Google Scholar

[2] L. Szente and J. Szejtli: Trends in Food Science & Technology Vol. 15 (2004), p.137.

Google Scholar

[3] D. Kilburn, G. Dlubek, J. Pionteck and M. A. Alam: Polymer Vol. 47 (2006), p.7774.

Google Scholar

[4] P.E. Mallon, in: Principles and Applications of Positron and Positronium Chemistry, edited by Y.C. Jean, P.E. Mallon, D.M. Schrader, World Scientific, Singapore, (2003), p.253.

DOI: 10.1142/9789812775610_0001

Google Scholar

[5] A.M. Moreira da Silva, J.M.A. Empis and J.J.C. Teixeira-Dias: Carboh. Res. Vol. 337 (2002), p.2501.

Google Scholar

[6] M.F. Ferreira Marques, P.M. Gordo, Zs. Kajcsos, C. Lopes Gil, A.P. de Lima, D.P. Queiroz and M.N. de Pinho: Radiat. Phys. Chem. Vol. 76 (2007), p.129.

DOI: 10.1016/j.radphyschem.2006.03.017

Google Scholar

[7] J. Kansy: Nucl. Instrum. Methods Phys. Res. A 3 Vol. 74 (1996), p.235.

Google Scholar

[8] S.J. Tao: J. Chem. Phys. Vol. 56 (11) (1972), p.5499.

Google Scholar

[9] M. Eldrup, D. Lightbody and J.N. Sherwood: Chem. Phys. Vol. 63 (1981), p.51.

Google Scholar

[10] F.H.J. Maurer and M. Schmid: Radiat. Phys. Chem. Vol. 58 (2000), p.509.

Google Scholar

[11] M.F. Ferreira Marques, C. Lopes Gil, P.M. Gordo, A.P. de Lima, D. Placco Queiroz, M.N. de Pinho, Zs. Kajcsos and G. Duplâtre: Mater. Sci. Forum Vol. 445-446 (2004), p.289.

DOI: 10.4028/www.scientific.net/msf.445-446.289

Google Scholar

[12] B. Jasinska, A.L. Dawidowicz, T. Goworek and S. Radkiewicz: Phys. Chem. Chem. Phys. Vol. 2 (2000), p.3269.

Google Scholar

[13] K. Süvegh, K. Fujiwara, K. Komatsu, T. Marek, T. Ueda and A. Vértes: Chem. Phys. Let. Vol. 344 (2001), p.263.

Google Scholar

[14] Z.L. Peng, Y. Itoh, S.Q. Li and S.J. Wang: Phys. Stat. Sol. A, Vol. 155 (1996), p.299.

Google Scholar

[15] Y. Itoha, A. Shimazub, Y. Sadzukac, T. Sonobec and S. Itai: Inter. J. of Pharm. Vol. 358 (2008), p.91.

Google Scholar