Atomic Scale Investigation of Impurity 3D Distribution in Nanocrystalline Ni Processed by SPD

Article Preview

Abstract:

Some nanocrystaline Ni was prepared by repeated cold rolling with intermediate folding (F&R). The material was then processed by High Pressure Torsion (HPT) to study the grain evolution under additional Severe Plastic Deformation (SPD). Microstructures were characterized by Transmission Electron Microscopy (TEM) and the impurity distribution was analyzed by Atom Probe Tomography (APT). In this paper, we discuss about the influence of impurities on the grain growth during HPT and on the grain size reduction mechanism during SPD.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

169-174

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, , R.K. Islamgaliev, I.V. Alexandrov, Prog in Mater Sci 45 (2000) 103.

Google Scholar

[2] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer and Y.T. Zhu, J.O.M. vol. 58, issue 4 (2006) p.33.

Google Scholar

[3] R. Z. Valiev, M. J. Zehetbauer, Y. Estrin, H. -W. Höppel, Yu. Ivanisenko, H. Hahn, G. Wilde, H. J. Roven, X. Sauvage, and T. G. Langdon, Adv. Eng. Mater. 9 (2007) 527-533.

DOI: 10.1002/adem.200700078

Google Scholar

[4] G. Wilde, G.P. Dinda, H. Rösner, Int. J. Mat. Res. 98 (2007) 4.

Google Scholar

[5] G.P. Dinda, H. Rösner, G. Wilde, Mater Sci Eng. A 410-411 (2005) 328.

Google Scholar

[6] G.P. Dinda, H. Rösner, G. Wilde, Scripta Mater 52 (2005) 577.

Google Scholar

[7] X. Sauvage, D.G. Dinda, G. Wilde, Scripta Mater 56 (2007) 181-184.

Google Scholar

[8] H.W. Zhang, X. Huang, R. Pippan, N. Hansen, Acta Mater 58 (2010) 1698.

Google Scholar

[9] A. Bachmaier, A. Hohenwarter, R. Pippan, Scripta Mater 61 (2009) 1016.

Google Scholar

[10] X.Z. Liao, A.R. Kilmametov, R.Z. Valiev, H. Gao, X. Li, A.K. Mukherjee, J.F. Bingert, Y.T. Zhu, Appl. Phys. Lett. 88 (2006) 021909.

DOI: 10.1063/1.2159088

Google Scholar

[11] B. Yang, H. Vehoff, A. Hohenwarter, M. Hafok, R. Pippan, Scripta Mater 58 (2008) 790.

DOI: 10.1016/j.scriptamat.2007.12.039

Google Scholar

[12] R.Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, V.U. Kazykhanov, X. Sauvage, Scripta Mater 63 (2010) 949.

DOI: 10.1016/j.scriptamat.2010.07.014

Google Scholar

[13] X. Sauvage and Y. Ivanisenko, J. Mat. Sci. 42 (2007), 1615-1621.

Google Scholar

[14] G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, R. Valiev, Philos Mag Letters vol. 88, issue 6 (2008) pp.459-466.

DOI: 10.1080/09500830802186938

Google Scholar

[15] H.W. Zhang, X. Huang, N. Hansen, Acta Mater 56 (2008) 5451.

Google Scholar

[16] Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, A. Hamaza, Scripta Mater 51 (2004) 1023.

Google Scholar

[17] E.O. Hall, Proc. Phys. Soc. B 64 (1951) 747.

Google Scholar

[18] N.J. Petch, J. Iron Steel Instrum. 173 (1953) 25.

Google Scholar

[19] E. Cadel, D. Lemarchand, S. Chambreland, D. Blavette, Acta Materialia, Volume 50, Issue 5, 14 March 2002, Pages 957-966.

DOI: 10.1016/s1359-6454(01)00395-0

Google Scholar