Influence of Thermal Cycling on Dilatation and Electrical Resistance of Ti - 49.8 at. %Ni Alloy after Hot Rolling

Article Preview

Abstract:

The effect of thermal cycling of the Ti - 49.8 at. % Ni alloy deformed by rolling at 500 оС on dilatation of the material was investigated. It was shown that R → B2 and B19' → B2 phase transformations take place during heating due to retaining of R-phase at the lowest temperature of cycling. The evolution and subsequent stabilization of two-way shape memory effect (TWSME) upon thermal cycling are caused by decreasing of the residual B19'- martensitic phase formed during rolling. It was revealed that recoverable strain of the alloy doesn’t exceed 0.8 % even after forty cycles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

985-990

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kh. Ja. Mulyukov, R.I. Babicheva: Deformatsiya i razrushenie materialov 12 (2009), p.32.

Google Scholar

[2] Kh. Ja. Mulyukov, R.I. Babicheva: Perspektivnie materiali 7 (2009), p.24.

Google Scholar

[3] B. Ye, B.S. Majumdar, I. Dutta: Acta Mater. 57 (2009), p.2403.

Google Scholar

[4] Z.G. Wang, X.T. Zu, P. Fu, J.Y. Dai, S. Zhu: Materials and Engineering A360 (2003), p.126.

Google Scholar

[5] T. Fukuda, A. Deguchi, T. Kakeshita and T. Saburi: Mater. Trans. JIM Vol. 38 (1997), p.514.

Google Scholar

[6] Y. Liu, J. VanHumbeeck: Acta Mater. 47 (1998), p.199.

Google Scholar

[7] Y. Liu, P.G. McCormick: Acta Metall. 38 (1990), p.1321.

Google Scholar

[8] J.J. Wang, T. Omori, Y. Sutou, R. Kainuma, K. Ishida: Scripta Mater. 52 (2005), p.311.

Google Scholar

[9] J. Kwarciak, Z. Lekston, H. Morawiec: Journal of Materials Science 22 (1987), p.2341.

Google Scholar

[10] Z. He, K.R. Gall and L.C. Brinson: Metall. and Mater. Trans. Vol. 37A (2006), p.579.

Google Scholar

[11] Z.G. Wang, X.T. Zu: Journal of Materials Science 40 (2005), p.2663.

Google Scholar

[12] F. Gori, D. Carnevale, A. Doro Altan, S. Nicosia and E. Pennestri: International Journal of Thermophysics Vol. 27 (2006), p.866.

Google Scholar

[13] J. Uchil: Journal of Physics Vol. 58 (2002), p.1131.

Google Scholar

[14] A.A. Klopotov, A.I. Potekaev, V.A. Polyanskii, N.V. Girsova, E.L. Semenova, E.V. Kozlov: Russian Physics Journal Vol. 40 (1997), p.205.

DOI: 10.1007/bf02806190

Google Scholar

[15] M. Nishida, T. Honma: Scripta Metall. Vol. 18 (1984), p.1293.

Google Scholar

[16] N.G. Jones, S.L. Raghunathan and D. Dye: Metall. and Mater. Trans. Vol. 41A (2010), p.912.

Google Scholar

[17] H. Luo, F. Shan, Y. Huo, Y. Wang, W. Jin: Journal of materials science letters 17 (1998), p.713.

Google Scholar

[18] T. Fukuda, T. Saburi, K. Doi, S. Nenno: Mater. Trans. JIM Vol. 33 (1992), p.271.

Google Scholar

[19] S. Miyazaki, T. Imai, Y. Igo and K. Otsuka: Metall. and Mater. Trans. Vol. 17A (1986), p.115.

Google Scholar

[20] Y.F. Zheng, L.C. Zhao, H.Q. Ye: Mater. Sci. and Eng. A297 (2001), p.185.

Google Scholar