Prediction of the Tension/Compression Asymmetry of ECAP Processed FCC Material Using an Integrated Model Based on Dislocation and Back-Stress

Abstract:

Article Preview

In our recent work, a new integrated model was proposed to describe the back-stress evolution based on the dislocation substructure and texture. By relating the back-stress to the dislocation density in cell walls and in the cell interior, this model is able to capture the back-stress evolution of ECAP processed pure aluminium. In this paper, the model is used for another FCC material, namely copper. The aim is to check whether this model is able to predict the tension/compression asymmetry (due to the back-stress) of copper. The results show that this is indeed the case and it is also found that the strain rate ratio proposed in our previous work [1] is a function of the dislocation density ratio.

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Edited by:

Jing Tao Wang, Roberto B. Figueiredo and Terence G. Langdon

Pages:

961-966

DOI:

10.4028/www.scientific.net/MSF.667-669.961

Citation:

E. Z. Chen et al., "Prediction of the Tension/Compression Asymmetry of ECAP Processed FCC Material Using an Integrated Model Based on Dislocation and Back-Stress", Materials Science Forum, Vols. 667-669, pp. 961-966, 2011

Online since:

December 2010

Export:

Price:

$35.00

[1] Chen, E., et al., J. Mater. Sci., 2010. 45(17): p. 9p.

[2] Valiev, R.Z. and T.G. Langdon, Prog. Mater Sci., 2006. 51(7): pp.881-981.

[3] Beyerlein, I.J. and C.N. Tome, Int. J. Plast., 2007. 23(4): p. 25p.

[4] Dupuy, L. and E.F. Rauch, Mater. Sci. Eng., A, 2002. 337(1/2): p. 7p.

[5] El-Danaf, E.A., et al., Mater. Sci. Eng., A, 2010. 527(10-11): pp.2547-2558.

[6] Beyerlein, I.J. and L.S. Tóth, Prog. Mater Sci., 2009. 54(4): pp.427-510.

[7] Estrin, Y., et al., Acta Mater., 1998. 46(15): pp.5509-5522.

[8] Tóth, L.S., Comput. Mater. Sci., 2005. 32(3-4): pp.568-576.

[9] Oh-ishi, K., et al., Mater. Sci. Eng., A, 2005. 410-411: pp.183-187.

[10] Beyerlein, I.J., et al., J. Mater. Sci., 2007. 42(5): p. 18p.

[11] Toth, L.S., et al., J. Eng. Mater. Technol., 2002. 124(1): p. 7p.

[12] Chen, E., et al., Rev. Adv. Mater. Sci., 2010. 25: p.9.

[13] Mughrabi, H., Acta Metall., 1983. 31(9): pp.1367-1379.

[14] Müller, M., et al., Scr. Mater., 1996. 35(12): pp.1461-1466.

[15] Fujita, H. and T. Tabata, Acta Metall., 1973. 21(4): pp.355-365.

[16] Tabata, T., et al., Acta Metall., 1978. 26(3): pp.405-411.

[17] Van Houtte, P., et al., Int. J. Plast., 2005. 21(3): pp.589-624.

[18] Gendelman, O.V., et al., Mater. Sci. Eng., A, 2006. 434(1-2): pp.88-94.

[19] Yapici, G.G., et al., Acta Mater., 2007. 55(14): p. 11p.

[20] Evans, K.R., et al., Phys. Status Solidi, 1967. 22(2): p.607.

[21] Sauzay, M., Int. J. Plast., 2008. 24(5): pp.727-745.

In order to see related information, you need to Login.