Prediction of the Tension/Compression Asymmetry of ECAP Processed FCC Material Using an Integrated Model Based on Dislocation and Back-Stress

Article Preview

Abstract:

In our recent work, a new integrated model was proposed to describe the back-stress evolution based on the dislocation substructure and texture. By relating the back-stress to the dislocation density in cell walls and in the cell interior, this model is able to capture the back-stress evolution of ECAP processed pure aluminium. In this paper, the model is used for another FCC material, namely copper. The aim is to check whether this model is able to predict the tension/compression asymmetry (due to the back-stress) of copper. The results show that this is indeed the case and it is also found that the strain rate ratio proposed in our previous work [1] is a function of the dislocation density ratio.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

961-966

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen, E., et al., J. Mater. Sci., 2010. 45(17): p. 9p.

Google Scholar

[2] Valiev, R.Z. and T.G. Langdon, Prog. Mater Sci., 2006. 51(7): pp.881-981.

Google Scholar

[3] Beyerlein, I.J. and C.N. Tome, Int. J. Plast., 2007. 23(4): p. 25p.

Google Scholar

[4] Dupuy, L. and E.F. Rauch, Mater. Sci. Eng., A, 2002. 337(1/2): p. 7p.

Google Scholar

[5] El-Danaf, E.A., et al., Mater. Sci. Eng., A, 2010. 527(10-11): pp.2547-2558.

Google Scholar

[6] Beyerlein, I.J. and L.S. Tóth, Prog. Mater Sci., 2009. 54(4): pp.427-510.

Google Scholar

[7] Estrin, Y., et al., Acta Mater., 1998. 46(15): pp.5509-5522.

Google Scholar

[8] Tóth, L.S., Comput. Mater. Sci., 2005. 32(3-4): pp.568-576.

Google Scholar

[9] Oh-ishi, K., et al., Mater. Sci. Eng., A, 2005. 410-411: pp.183-187.

Google Scholar

[10] Beyerlein, I.J., et al., J. Mater. Sci., 2007. 42(5): p. 18p.

Google Scholar

[11] Toth, L.S., et al., J. Eng. Mater. Technol., 2002. 124(1): p. 7p.

Google Scholar

[12] Chen, E., et al., Rev. Adv. Mater. Sci., 2010. 25: p.9.

Google Scholar

[13] Mughrabi, H., Acta Metall., 1983. 31(9): pp.1367-1379.

Google Scholar

[14] Müller, M., et al., Scr. Mater., 1996. 35(12): pp.1461-1466.

Google Scholar

[15] Fujita, H. and T. Tabata, Acta Metall., 1973. 21(4): pp.355-365.

Google Scholar

[16] Tabata, T., et al., Acta Metall., 1978. 26(3): pp.405-411.

Google Scholar

[17] Van Houtte, P., et al., Int. J. Plast., 2005. 21(3): pp.589-624.

Google Scholar

[18] Gendelman, O.V., et al., Mater. Sci. Eng., A, 2006. 434(1-2): pp.88-94.

Google Scholar

[19] Yapici, G.G., et al., Acta Mater., 2007. 55(14): p. 11p.

Google Scholar

[20] Evans, K.R., et al., Phys. Status Solidi, 1967. 22(2): p.607.

Google Scholar

[21] Sauzay, M., Int. J. Plast., 2008. 24(5): pp.727-745.

Google Scholar