Ultrasonic Investigation of the Effect of Volume Fraction on the Clustering Structures of Magneto-Rheological Fluids

Article Preview

Abstract:

The rheological response of magnetorheological fluid (MRF) results from the polarization induced in the suspended particles by application of an external magnetic field. Characteristics of an MRF depend on the volume faction, that is the percentage of magnetic particles in the carrier liquid. We propose a qualitative investigation of these volume fraction effects by measuring properties of ultrasonic wave propagation velocity in MRFs having various volume fractions. The ultrasonic wave propagation velocity changes under the effect of an external magnetic field as a result of arrangement of clusters along the direction of the field in the MRF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-206

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Rabinow, The magnetic fluid clutch, AIEE Trans., vol. 67, pp.1308-1315, (1948).

Google Scholar

[2] M. R. Jolly, J. D. Carlson and B. C. Munoz, A model of behavior of magnetorheological materials, Smart Mater. Struct., vol. 5, pp.607-614, (1996).

Google Scholar

[3] P. Goldberg, J. Handford and P. Heerden, Polarization of light in suspensions of small ferrite particles in a magnetic field, J. Appl. Phys., vol. 42, pp.3874-3876, (1971).

DOI: 10.1063/1.1659700

Google Scholar

[4] A. Jozefczak, The time dependence of the changes of ultrasonic wave velocity in ferrofluid under parallel magnetic field, J. Magn. Magn. Mater., vol. 256, pp.267-270, (2003).

DOI: 10.1016/s0304-8853(02)00572-3

Google Scholar

[5] M. Motozawa and T. Sawada, Influence of magnetic field on ultrasonic propagation velocity in magnetic fluids, J. Magn. Magn. Mater., vol. 289, pp.66-69, (2005).

DOI: 10.1016/j.jmmm.2004.11.019

Google Scholar

[6] M. A. Bramantya, M. Motozawa, H. Takuma, M. Faiz and T. Sawada, Experimental analysis of clustering structures in magnetic and MR fluids using ultrasound, J. Phys.: Conf. Ser., vol 149, no. 012040, pp.1-4, (2009).

DOI: 10.1088/1742-6596/149/1/012040

Google Scholar

[7] D.Y. Chung, H.Z. Hung and J.X. Lin, Ultrasonic properties of magnetic fluid, J. Magn. Magn. Mater., vol. 39, pp.111-112, (1983).

Google Scholar

[8] D.Y. Chung and W. E. Isler, Ultrasonic velocity anisotropy in ferrofluids under the influence of a magnetic field, J. Appl. Phys., vol. 49, pp.1809-1812, (1978).

DOI: 10.1063/1.324819

Google Scholar

[9] D. Y. Chung, J.X. Lin, W.A. Funderburk and J. Popplewell, Electron diffusion in liquid-phase epitaxial p-GaAs: Ge layers determined by electron-beam-induced current method, J. Appl. Phys., vol. 53, pp.1236-1237, (1982).

DOI: 10.1063/1.330536

Google Scholar

[10] K. Gotoh and D.Y. Chung, Ultrasonic attenuations in magnetic fluids, J. Phys. Soc. Jpn., vol. 53, pp.2521-2528, (1984).

DOI: 10.1143/jpsj.53.2521

Google Scholar

[11] I.E. Taparov, N.E. Patsegon and A.F. Phedonenko, Some physical and mechanical phenomena in magnetizable fluids, J. Magn. Magn. Mater., vol. 39, pp.51-55, (1983).

DOI: 10.1016/0304-8853(83)90396-7

Google Scholar

[12] P.C. Jordan, Field dependent chain formation by ferromagnetic colloids, Mol. Phys., vol. 38, pp.769-780, (1979).

DOI: 10.1080/00268977900102031

Google Scholar

[13] D.Y. Chung, H.Z. Hung and J.X. Lin, Magnetic effects on the ultrasonic velocity and attenuation in magnetic fluids, J. Magn. Magn. Mater., vol. 65, pp.231-234, (1987).

DOI: 10.1016/0304-8853(87)90039-4

Google Scholar

[14] M.A. Bramantya, H. Takuma and T. Sawada, Ultrasonic study on clustering structures of a magneto-rheological fluid under uniform magnetic fields, J. Jpn. Soc. Appl. Electromag. Mech., vol. 17, pp.99-104, (2009).

Google Scholar