Time Variation of Operational Characteristics for a Linear Permanent Magnet Synchronous Generator under Various Load Conditions

Article Preview

Abstract:

The paper presents the simulated time variation of the operational parameters of a Linear Permanent Magnet Synchronous Generator (LPMSG). A hybrid specific simulation model, incorporating standard finite elements combined with analytical solution of Laplace equation in the air gap area, has been coupled with a dynamic simulation model for the external electrical circuit loading the LPMSG. The proposed model enables the simulation of generator’s overall performance under various load conditions, taking also into account the case of surface magnet skew on the translator of the linear generator.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

252-258

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Razek, J. Coulomb, M. Feliachi, J. Sabonnadiere, Conception of an air-gap element for the dynamic analysis of the electromagnetic field in electric machines, IEEE Transactions on Magnetics, vol. 18/2, 1982, pp.655-659.

DOI: 10.1109/tmag.1982.1061898

Google Scholar

[2] A. Kladas, A. Razek, Eddy currents modelling in synchronous machines during starting accounting for the nature of damper end connections, IEEE Transactions on Magnetics, vol. 24/1, 1988, pp.186-189.

DOI: 10.1109/20.43886

Google Scholar

[3] F. Piriou, A. Razek, A model for coupled magnetic-electric circuits in electric machines with skewed slots, IEEE Transactions on Magnetics, vol. 26/2, 1990, pp.1096-1100.

DOI: 10.1109/20.106510

Google Scholar

[4] N.M. Kimoulakis, A.G. Kladas, and J.A. Tegopoulos, Power Generation Optimization from Sea Waves by using a Permanent Magnet Linear Generator Drive, IEEE Transactions on Magnetics, vol. 44, Issue 6, June 2008, pp.1530-1533.

DOI: 10.1109/tmag.2007.914854

Google Scholar

[2] N. M. Kimoulakis, A. G. Kladas and J. A. Tegopoulos, «Cogging Force Minimization in a Coupled Permanent Magnet Linear Generator for Sea Wave Energy Extraction Applications», IEEE Transactions on Magnetics, vol. 45, No3, March 2009, pp.1246-1249.

DOI: 10.1109/tmag.2009.2012581

Google Scholar

[2] G. D. Kalokiris, T. D. Kefalas, A. G. Kladas and J. A. Tegopoulos, Special air-gap element for 2D FEM analysis of electrical machines accounting for rotor skew, IEEE Transactions on Magnetics, vol. 41, May 2005, p.12020-(2023).

DOI: 10.1109/tmag.2005.846268

Google Scholar

[3] R. Wang, H. Mohellebi, T.J. Flack, M.J. Kamper, J.D. Buys and M. Feliachi, Two-Dimensional CartesianAir-Gap Element (CAGE) for Dynamic Finite-Element Modeling of Electrical Machines With Flat Air Gap, IEEE Transactions on Magnetics, vol. 38, No2, March 2002, pp.1357-1360.

DOI: 10.1109/20.996024

Google Scholar

[2] Rhinefrank, E.B. Agamloh, A. von Jouanne et al., Novel ocean energy permanent magnet linear generator buoy, Renewable Energy 31 (2006), pp.1279-1298.

DOI: 10.1016/j.renene.2005.07.005

Google Scholar

[3] Ramdane Lateb, Nourredine Takorabet, and Farid Meibody-Tabar, Effect of Magnet Segmentation on the Cogging Torque in Surface-Mounted Permanent-Magnet Motors, IEEE Transactions on Magnetics, vol. 42, No 3, March 2006, pp.442-445.

DOI: 10.1109/tmag.2005.862756

Google Scholar

[4] D. Zarko, D. Ban and T.A. Lipo, Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping, IEEE Transactions on Magnetics, vol. 44, no. 1, January 2008, pp.52-65.

DOI: 10.1109/tmag.2007.908652

Google Scholar

[5] Delvis Anibal Gonzalez, Juan Antonio Tapia, and Alvaro Letelier Bettancourt, Design Consideration to Reduce Cogging Torque in Axial Flux Permanent-Magnet Machines, IEEE Transactions on Magnetics, vol. 43, No 8, August 2007, pp.3435-3440.

DOI: 10.1109/tmag.2007.899349

Google Scholar

[6] K. Rhinefrank, E.B. Agamloh, A. Von Jouanne et al., Novel ocean energy permanent magnet linear generator buoy, Renewable Energy 31 (2006), pp.1279-1298.

DOI: 10.1016/j.renene.2005.07.005

Google Scholar

[7] O. Danielson, M. Leijon, E. Sjostedt, "Detailed Study of the Magnetic Circuit in a Longitudinal Flux Permanent-Magnet Synchronous Linear Generator, IEEE Transactions on Magnetics, vol. 41, no 9, pp.2490-2495, September (2005).

DOI: 10.1109/tmag.2005.855449

Google Scholar

[8] Mats Leijon, Hans Bernhoff, Olov Agren, Jan Isberg, Jan Sundberg, Marcus Berg, Karl Erik Karlsson, and Arne Wolfbrandt, Multiphysics Simulation of Wave Energy to Electric Energy Conversion by Permanent Magnet Linear Generator, IEEE Transactions on Energy Conversion, vol. 20, no1, pp.219-224, March (2005).

DOI: 10.1109/tec.2004.827709

Google Scholar

[9] Y. Yang, X. Wang, R. Zhang, T. Ding, and R. Tang, The Optimization of Pole Arc Coefficient to Reduce Cogging Torque in Surface-Mounted Permanent Magnet Motors, IEEE Transactions on Magnetics, vol. 42, No 4, April 2006, pp.1135-1138.

DOI: 10.1109/tmag.2006.871452

Google Scholar

[10] M. Lukaniszyn, M. Jagiela and R. Wrobel, Optimization of Permanent Magnet Shape for Minimum Cogging Torque Using a Genetic Algorithm, IEEE Transactions on Magnetics, vol. 40, No 2, March 2004, pp.1228-1231.

DOI: 10.1109/tmag.2004.825185

Google Scholar

[11] Nicola Bianchi and Silverio Bolognani Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors, IEEE Transactions on Industry Applications, vol. 38, No 5, September/Octromber 2002, pp.1259-1265.

DOI: 10.1109/tia.2002.802989

Google Scholar

[12] N. M. Kimoulakis, A. G. Kladas and J. A. Tegopoulos, Dynamic performance simulation of a four sided linear permanent magnet machine for power generation from sea waves, Journal of Optoelectronics and Advanced Materials, Vol. 10 ISS. 5-2008, printed date May 14 2008, pp.1268-1271.

DOI: 10.1109/tmag.2007.914854

Google Scholar