Numerical Simulation of the Shock Compaction of W/Cu Powders

Article Preview

Abstract:

A numerical simulation approach is used to study the deformation and temperature distribution of W/Cu powders under shock compaction. A two-dimensional micromechanical model is employed where only a few particles are considered. The simulation is performed using plane strain element and Lagrange formulation. Shock compaction is achieved by bringing in the W/Cu powders an intense compression wave using a high-velocity rigid wall. The effects of compact velocity, particle size and friction on the particle deformation and temperature distribution are discussed based on the results of simulations. The study provides a detailed understanding of the micromechanical behavior of metal powders during shock compaction process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kondo, S. Soga, A. Sawaoka, and M. Araki: J. Mater. Sci. 20 (1985), p. 1033Mater.

Google Scholar

[2] D. G. Morris: Mater. Sci. Engr. 57 (1983), p.187.

Google Scholar

[3] B. H. Shao, Z.Y. Liu, and X. T. Zhang: J. Mater. Proc. Tech. 85 (1999), p.121.

Google Scholar

[4] M. M. Carrol, A. C. Holt: J. Appl. Phys. 43 (1972), p.1626.

Google Scholar

[5] B. M. Butcher, M. M. Carrol, and A. C. Holt: J. Appl. Phys. 45 (1974), p.3864.

Google Scholar

[6] R. R. Boade: J. Appl. Phys. 59 (1986), p. (1962).

Google Scholar

[7] W .H. Gourdin: Mater. Sci. Eng. 67 (1984), p.179.

Google Scholar

[8] G. Alvarez, A.C. Gonzalez, and J.C. Cuyas: Powder metal. 32 (1986), p.57.

Google Scholar

[9] D.R. Kumar, R. K. Kumar, and P. K. Philip: J. Appl. Phys. 85 (1999), p.767.

Google Scholar

[10] R. L. Williamson, R. N. Wright, G. E. Korth, and B. H. Rabin: J. Appl. Phys. 66 (1988), p.1826.

Google Scholar

[11] R. L. Williamson, R. A. Berry, in: Shock Waves in Condensed Matter, edtied by Y. M. Gupta (Plenum, New York, 1986), p.341.

Google Scholar

[12] R. L. Williamson: J. Appl. Phys. 68 (1990), p.1287.

Google Scholar

[13] D. J. Benson: Modelling Simul. Mater. Sci. Eng. 2 (1994), p.535.

Google Scholar

[14] G. R. Johnson, and W. H. Cook: Eng. Fract. Mech. 21 (1985), p.31.

Google Scholar

[15] W. C. Jiang and G. Y Ding, in: ANSYS/LS-DYNA User's Manual, (Beijing Institute of Technology, 1998), p.215.

Google Scholar

[16] M. Yosuff, and N. W. Page: Powder Technol. 76 (1993), p.299.

Google Scholar

[17] J. X. Wang, X. L. Zhang, G. Rong, Y. X. Sun, and Y. S. Fu: Science Technology and Engineering. 7 (2007), p.5479.

Google Scholar

[18] A. M. Staver, in: Shock Waves and High-Strain-Rate Phenomena in Metals, edited by M. A. Meyers and L. E. Murr (Plenum, New York, 1981), p.865.

Google Scholar