Underwater Explosive Consolidation of Mechanically Milled Al/TiB2 Composites

Article Preview

Abstract:

Aluminum matrix composites containing10, 20 and 30vol%TiB2 particles were manufactured by underwater shock consolidation method. High energy ball milling was used to produce a homogenous Al matrix composite reinforced by TiB2 powders. Microstructures of recovered compacts were examined by optical microscope. Sintering of the compacts was carried out at 400 C for 70 minutes. Density, hardness and bending strength of the compacts were measured before and after sintering treatment. The sintered composite samples showed better improvement in the bending strength and deflection The sintered Al matrix samples with 20vol%TiB2 showed highest bending strength and high deflection. SEM fractography examination was used for analysis of fracture surfaces of the compacts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Noguchi, K. Takahashi, Key Eng. Mater, Vol. 127-131(1997), p.53.

Google Scholar

[2] B. Maruyama, Adv. Mater. Processes (1999), p.6.

Google Scholar

[3] T. S. Srivatsan, E. J. Lavernia, J. Mater. Sci., 27(1992), p.5965.

Google Scholar

[4] L. Wang, R. Arsenault,J. Metall. Trans. A22 (1991), p.3013.

Google Scholar

[5] R. G. Munro, J. Res. Natl. Inst. Stand. Technol. Vol. 105 (2000), p.709.

Google Scholar

[6] F. Olevsky, P. mogilevsky, E. Y. Gutmanas, I. Gotman, Metall. Trans. A 27A (1996), p. (2071).

Google Scholar

[7] M. Oehering, T. Pfullmann and R. Bormann, Mater. Sci. Forum, Vol. 179(1995), p.435.

Google Scholar

[8] R. A. Prummer, G. Ziegler, Powder Metall. Int., 9(1)(1985), p.1035.

Google Scholar

[9] N. N. Thadani, Adv. Mater. Manuf. Proc., 3(4)(1988), p.49.

Google Scholar

[10] K. Hokamoto, J. S. Lee, M. Fujita, S. Itoh, K. Raghukandan, Mater. Sci. 37(2002), p.4073.

Google Scholar

[11] K. Raghukandan, K. Hokamoto, J. S. Lee, A. Chiba, B. C. Pai, J. Mater. Process. Technol. 134(2003), p.329.

Google Scholar

[12] K. Sivakumar, Y. R. Mahajan. and V. V. Bhahu Prasad, J. Powder. Metall. 28(1992), p.63.

Google Scholar

[13] K. Sivakumar, T. Balakrishna Bhat and P. Ramakrishnan, J. Mater. Process. Technol. 73(1998), p.268.

Google Scholar

[14] K. Sivakumar, T. Balakrishna Bhat and Ramakrishnan, J. Mater. Processing Technol., 62(1996), p.191.

Google Scholar

[15] K. Sivakumar and K. Hokamoto, J. Mater. Sci., Vol. 35(2000), p.5823.

Google Scholar

[16] K. Sivakumar, T. Balakrishna and K. Hokamoto, J. Mater. Process. Technol., (2001), p . 396.

Google Scholar

[17] K. Sivakumar, K. Hokamoto, S. Nakano and M. Fujita, in shock-wave and high strain-rate phenomena, K. P. Staudhammer, and M.A. Meyers(Eds). Elsevier, New York, (2001), p.313.

Google Scholar

[18] K. Hokamoto, K. Raghukandan, J. S. Lee, M. Fujita and R. Tomoshige, Mater. Sci. Forum, Vol. 437-438(2003), p.169.

DOI: 10.4028/www.scientific.net/msf.437-438.169

Google Scholar

[19] H. Eskandari, K. Hokamoto, H. M. Ghasemi and M. Emamy, S. Borji, J. S. Lee, Mater. Sci. Forum, Vols. 465-466(2004), p.433.

DOI: 10.4028/www.scientific.net/msf.465-466.433

Google Scholar

[20] S. Itoh, S. Kubota, A. Kira, S. Nagano and M. Fujita, J. Japan Explosives Soc., Vol. 55(1994), p.71.

Google Scholar

[21] H. Eskandari, H. M. Ghasemi and M. Emamy, Mater. Sci. Forum, Vols. 465 (2004), p.213.

Google Scholar

[22] M. Gupta, Aluminum Transaction, Vol. 1, No1 (1999), p.33.

Google Scholar

[23] D. L. Mcdanels, Metall. Trans. A, Vol. 16 (1985), p.1105.

Google Scholar