First Principle Study on Ti4AlN3 Properties under Pressure Effect

Article Preview

Abstract:

The structural, elastic and thermodynamic properties of the ternary layered nitrides Ti4AlN3 under the pressure effect have been calculated by using the full-potential linearized augmented plane-wave method within the generalized gradient approximation (GGA). The calculated properties such as cell parameters and bulk modulus, can found in good agreement with the experimental and other theoretical data. Using the quasi-harmonic Debye model in which the phonon vibration effects are considered, the thermodynamic properties such as thermal expansion coefficient, Debye temperature and specific heats in the whole pressure range from 0 to 50GPa and temperature range from 0 to 1600 K has been obtained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

147-150

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. W. Barsoum: Prog Solid State Ch Vol 28 (2000), p.201.

Google Scholar

[2] J. Wang, Y. Zhou: Annu Rev Mater Res Vol 39 (2009), p.415.

Google Scholar

[3] M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, C. R. Hubbard: J. Appl. Phys. Vol 87 (2000), p.8407.

DOI: 10.1063/1.373555

Google Scholar

[4] A. Djedid, S. Mecabih, O. Abbes, B. Abbar, Physica B: Condensed Matter (Amsterdam, Netherlands) Vol 404 (2009), p.3475.

DOI: 10.1016/j.physb.2009.05.048

Google Scholar

[5] A. Joulain, L. Thilly: J. Rabier, Philos. Mag. Vol 88 (2008), p.1307.

Google Scholar

[6] J. Song, M. Yan, B. Mei, J. Zhu, C. Tian, Application: CN Patent 2007-10051875, 101058434, (2007).

Google Scholar

[7] B. Manoun, R. P. Gulve, S. K. Saxena, S. Gupta, M. W. Barsoum, C. S. Zha, Physical Review B (Condensed Matter and Materials Physics) 2006, 73, 024110.

Google Scholar

[8] B. Manoun, S. K. Saxena, M. W. Barsoum, Appl. Phys. Lett. 2005, 86, 101906/1.

Google Scholar

[9] B. Manoun, S. K. Saxena, T. El-Raghy, M. W. Barsoum, Appl. Phys. Lett. 2006, 88, 201902/1.

DOI: 10.1063/1.2202387

Google Scholar

[10] B. Manoun, F. X. Zhang, S. K. Saxena, T. El-Raghy, M. W. Barsoum, J. Phys. Chem. Solids Vol 67 (2006), p. (2091).

Google Scholar

[11] J. C. Ho, H. H. Hamdeh, M. W. Barsoum, T. El-Raghy, J. Appl. Phys. Vol 86 (1999), p.3609.

Google Scholar

[12] P. Blaha, K. Schwarz, J. Luitz, Technische Universit t Wien, Austria (1999).

Google Scholar

[13] M. A. Blanco, E. Francisco, V. Luaña, Comput Phys Commun Vol 158 (2004), p.57.

Google Scholar

[14] M. Y. Gamarnik, M. W. Barsoum, T. El-Raghy, Powder Diffr. Vol 15 (2000), p.241.

Google Scholar

[15] S. Myhra, J. A. A. Crossley, M. W. Barsoum, J. Phys. Chem. Solids Vol 62 (2001), p.811.

Google Scholar

[16] A. T. Procopio, M. W. Barsoum, T. El-Raghy, Metall. Mater. Trans. A Vol 31A (2000), p.333.

Google Scholar

[17] S. Li, R. Ahuja, M. W. Barsoum, P. Jena, B. Johansson, Appl. Phys. Lett. Vol 92 (2008), 221907/1.

DOI: 10.1063/1.2938862

Google Scholar

[18] C. J. Rawn, M. W. Barsoum, T. El-Raghy, A. Procipio, C. M. Hoffmann, C. R. Hubbard, Mater. Res. Bull. Vol 35 (2000), p.1785.

DOI: 10.1016/s0025-5408(00)00383-4

Google Scholar