Effects of LiF on Sintering Temperature and Microwave Dielectric Properties of (Ca0.3La0.4/3)(Li0.25Nd0.25)TiO3 Ceramics Doped by ZnO-B2O3- SiO2 Glass

Article Preview

Abstract:

The sintering behaviors and microwave dielectric properties of the (Ca0.3La0.4/3)(Li0.25Nd0.25)TiO3 (abbreviated CLLNT) ceramics doped by small amounts of ZnOB2O3- SiO2 glass and LiF were investigated in this paper. The combination adding of ZnO-B2O3- SiO2 glass and LiF improved the densifications of the CLLNT ceramics and the sintering temperature of the CLLNT ceramics were efficiently lowered from 1400°C to 1000°C. Especially, the 4.0wt% ZnO-B2O3-SiO2 glass and 1.0wt% LiF doped CLLNT ceramic sintered at 1000°C for 3h has optimum microwave dielectric properties of Kr=97, Q×f=1286GHz, and TCF=43 ppm/°C, which enable it a suitable candidate for LTCC applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

155-158

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.H. Yoon, Y.H. Chang, W.S. Kim, et al: Jpn. J. Appl. Phys. 35(1996), p.5145.

Google Scholar

[2] W.S. Kim, E.S. Kim and K.H. Yoon: Ferroelectrics 223(1999), p.277.

Google Scholar

[3] W.S. Kim, K.H. Yoon and E.S. Kim: Jpn. J. Appl. Phys. 39(2000), p.5650.

Google Scholar

[4] C.L. Huang, J.T. Tsai and Y.B. Chen: Mater. Res. Bull. 36(2001), p.547.

Google Scholar

[5] H.L. Chen and C.L. Huang: Jpn. J. Appl. Phys. 41(2002), p.5650.

Google Scholar

[6] E.S. Kim, B.S. Chun, D.W. Yoo, et al: Mater. Sci. Eng. B 99(2003), p.247.

Google Scholar

[7] T. Lowe, F. Azough and R. Freer: J. Eur. Ceram. Soc. 23(2003), p.2429.

Google Scholar

[8] D. Zou, Q.L. Zhang, H. Yang, et al: J. Eur. Ceram. Soc. 28(2008), p.2777.

Google Scholar

[9] S. -H. Kim and J. -H. Koh: J. Eur. Ceram. Soc. 28(2008), p.2969.

Google Scholar

[10] Q.L. Zhang, H. Yang and H.P. Sun: J. Eur. Ceram. Soc. 28(2008), p.605.

Google Scholar

[11] A. Yokoi, H. Ogawa, A. Kan, et al: J. Ceram. Soc. Jpn. 112(2004), p. S1633.

Google Scholar

[12] J.X. Tong, Q.L. Zhang, H. Yang, et al: Mater. Lett. 59(2005), p.3252.

Google Scholar

[13] M. Pollet and S. Marinel: J. Eur. Ceram. Soc. 23(2003), p. (1925).

Google Scholar

[14] P.S. Anjana and M.T. Sebastian: J. Am. Ceram. Soc. 92(2009), p.96.

Google Scholar

[15] J.X. Tong, Q.L. Zhang, H. Yang, et al: J. Am. Ceram. Soc., 90(2007), p.845.

Google Scholar

[16] J. -Y. Ha, J. -W. Choi, S. -J. Yoon, et al: J. Eur. Ceram. Soc. 23(2003), p.2413.

Google Scholar

[17] W.S. Kim, T.H. Kim, E.S. Kim, et al: Jpn. J. Appl. Phys. 37(1998), p.5367.

Google Scholar

[18] M.T. Sebastian and H. Jantunen: Int. Mater. Rev. 53(2008), p.57.

Google Scholar

[19] Y. Guo, H. Ohsato and K. -I. Kakimoto: J. Eur. Ceram. Soc. 26(2006), p.1827.

Google Scholar