Initial Oxidation Behavior of Zr55Cu30Al10Ni5 Bulk Metallic Glass in Short-Term Stage

Article Preview

Abstract:

The isothermal initial oxidation kinetics of Zr55Cu30Al10Ni5 bulk metallic glass in glassy state (lower than Tg = 685K) and in surpercooled liquid state (Tg = 685 K < T < Tx=774 K) is investigated under dry air by thermogravimetric method in short-term stage (for 1.5 hours). A protective parabolic law is followed in glassy state, except at 573 K where a linear law is followed. The self-limiting oxidation kinetics evolves from a short linear stage to a steady mild growth stage in supercooled liquid state at 723 K, which is induced mainly by crystallization and by the fast growth of dense scale. The growth of the scale is dominated by the formation of tetragonal-ZrO2 (t- ZrO2) in the range of 623 K - 673 K in glassy state for 1.5 hours. The activation energy of oxidation is mainly piloted by the diffusion of oxygen ions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

209-212

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue: Acta Mater, Vol. 48 (2000), p.279.

Google Scholar

[2] Q. Wang, J.M. Pelletier, J.J. Blandin, M. Sue: J. Non-Cryst Solids Vol. 351 (2005), p.2224.

Google Scholar

[3] K. Ashida, Y. Hatano, W. Nishida, K. Watanabe, A. Amano, K. Mastuda, S. Ikeno:J. Nucl. Sci. Tech. Vol. 38 (2001), p.952.

Google Scholar

[4] X. Sun, S. Schneider, U. Geyer, W.L. Johnson, M. A. Nicolet: J. Mater. Res. Vol. 11 (1996), p.2738.

Google Scholar

[5] W. Kai, H.H. Hsieh, T.G. Nieh, Y. Kawamura: Intermetallics Vol. 10(2002), p.1265.

Google Scholar

[6] A. Inoue, T. Zhang: Mater. Trans. Vol. 37(1996), p.185.

Google Scholar

[7] L. T. Banner, S. Tekobo, F. Garay, B. T. Clayton, Z. P. Thomas, E. Lindner, A. G. Richter, E. Pinkhassik: Chem. Mater. Vol. 22(2010) , p.2248.

DOI: 10.1021/cm903024h

Google Scholar

[8] Y.J. Chen, Y.S. Chen: Microelectronic Eng. Vol. 57–58 (2001), p.897.

Google Scholar

[9] P. G. Debenedetti ,F. H. Stillinger: NATURE Vol. 410 (2001), p.259.

Google Scholar

[10] U. Köster, L. Jastrow: Mater. Sci. Eng. A Vol. 449-451(2007), pp.57-62.

Google Scholar

[11] S. Schneider, X. Sun, M-A. Nicolet, and W.L. Johnson, in: Science and Technology of Rapid Solidificationand Processing, edited by M.A. Otooni, NATO ASI Series 278, Dordrecht, The Netherlands, and Boston, MA, (1995).

Google Scholar

[12] Z. H. Zhang, J.X. Xie : Microelectronic Eng. Vol. 57–58 (2001), p.897.

Google Scholar

[13] M.E. Launey, R. Busch 1, J.J. Kruzic: Scripta Mater. Vol. 54 (2006), p.483.

Google Scholar

[14] O. Haruyama , Y. Nakayama , R. Wada , H. Tokunaga , J. Okada , T. Ishikawa ,Y. Yokoyama: Acta Mater. Vol. 58 (2010) , p.1829.

DOI: 10.1016/j.actamat.2009.11.025

Google Scholar

[15] A. Slipenyuk , J. Eckert: Scripta Materialia Vol. 50 (2004), p.39.

Google Scholar