Preparation and Morphological Characteristics of Cellulose Micro/Nano Fibrils

Article Preview

Abstract:

Cellulose micro/nano fibrils generated from biomass are relative new reinforcing materials for polymer composites, which have potential lightweight and high strength and are renewable. In the present study, the preparation method of extracting cellulose micro/nano fibrils from wood was introduced. After successful disintegration, the morphological characteristics of the wood fibers, purified cellulose fibers, cellulose fibers activated by ultrasonic-wave and cellulose micro/nano fibrils after homogenization treatment, were compared by visual examination and scanning electron microscopy. The results showed that cellulose micro/nano fibrils have been efficiently extracted from wood, which have great potential in the application areas of papermaking, bio-nanocomposites, food, cosmetics/skin cream, medical/pharmaceutical, and so on.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

255-258

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.N. Nakagaito and H. Yano: Appl. Phys. A: Mater. Sci. Process Vol. 80 (2005), p.155.

Google Scholar

[2] O.A. Battista: Microcrystal Polymer Science (McGraw Hill Inc., New York 1975).

Google Scholar

[3] S. Iwamoto, A.N. Nakagaito, H. Yano and M Nogi: Appl. Phys. A Vol. 81 (2005), p.1109.

Google Scholar

[4] K. Abe, S. Iwamoto and H. Yano: Biomacromolecules Vol. 8 (2007), p.3276.

Google Scholar

[5] A.F. Turbak, F.W. Synder and K.R. Sandberg: J. Appl. Polym. Sci. Vol. 37 (1983), p.815.

Google Scholar

[6] F.W. Herrick, R.L. Casebier, J.K. Hamilton and K.R. Sandberg: J. Appl. Polym. Sci. Vol. 37 (1983), p.797.

Google Scholar

[7] A. Chakraborty, M. Sain and M. Kortschot: Holzforschung Vol. 59 (2005), p.102.

Google Scholar

[8] A. Bhatnagar and M.J. Sain: Reinf. Plast. Compos. Vol. 24 (2005), p.1259.

Google Scholar

[9] M. Pääkkö, M. Ankerfors and H. Kosonen: Biomacromolecules Vol. 8 (2007), p. (1934).

Google Scholar

[10] M. Henriksson, L.A. Berglund and P. Isaksson: Biomacromolecules Vol. 9 (2008), p.1579.

Google Scholar

[11] Q.Z. Cheng, S.Q. Wang and T.G. Rials: Cellulose Vol. 14 (2007), p.593.

Google Scholar

[12] Q.Z. Cheng, S.Q. Wang and T.G. Rials: Composites: Part A Vol. 40 (2009), p.218.

Google Scholar

[13] L. Taiz and E. Zeiger: Plant Physiology (Sinauer Associates Inc., Sunderland 2002).

Google Scholar

[14] S. Ahola: Properties and Interfacial Behaviour of Cellulose Nanofibrils (Helsinki Univ. Techn., Helsinki 2008).

Google Scholar

[15] S. Iwamoto, K. Abe and H. Yano: Biomacromolecules Vol. 9 (2008), p.1022.

Google Scholar

[16] K. Abe and H. Yano: Cellulose DOI 10. 1007/s10570-009-9334-9 (2009), in press.

Google Scholar

[17] M.Ö. Seydibeyoğlu and K. Oksman: Compos. Sci. Technol. Vol. 68 (2008), p.908.

Google Scholar