Constitutive Inequalities for the Damage of Elastic-Brittle Materials

Article Preview

Abstract:

Starting from the requirement that the principle of determinism be satisfied, two constitutive inequalities are derived for one-dimensional strain- and stress-based continuum damage models. The one-dimensional constitutive inequality corresponding to the strain-based formulation turns out to be much less restrictive than the one associated to the stress-based formulation and is extended to the three-dimensional case. This extension gives a general constitutive inequality for the damage of elastic-brittle materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

891-899

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chaboche, J.L., 1988. Continuum damage mechanics, Part I. ASME J. Appl. Mech. 55, 59-64.

Google Scholar

[2] Drucker, D.C., 1951. A more fundamental approach to plastic stress-strain relations. In: Proceedins of the 1 U.S. National Congress on Applied Mechanics, pp.487-491.

Google Scholar

[3] Germain, P., Nguyen, Q.S., Suquet, P., 1983. Continuum thermodynamics. ASME J. Appl. Mech. 50, 1010-1020.

DOI: 10.1115/1.3167184

Google Scholar

[4] Halphen, B., Nguyen, Q.S. 1975. Sur les matériaux standard généralisés. J. Méca. 14, 39-63.

Google Scholar

[5] He, Q. -C., Curnier, A., 1995. A more fundamental approach to damaged elastic stress-strain relations. Int. J. Solids Struct. 32, 1433-1457.

DOI: 10.1016/0020-7683(94)00183-w

Google Scholar

[6] Hill, R., 1970. Constitutive inequalities for isotropic elastic solids under finite strains. Proc. R. Soc. Lond. A. 314, 457-472.

DOI: 10.1098/rspa.1970.0018

Google Scholar

[7] Krajcinovic, D., 1996. Damage Mechanics. North-Holland, Elsevier, Amsterdam.

Google Scholar

[8] Krajcinovic, D., 2000. Damage Mechanics: accomplishments, trends and needs. Int. J. Solids Struct. 37, 267-277.

DOI: 10.1016/s0020-7683(99)00081-5

Google Scholar

[9] Lemaitre, J., 1992. A Course on Damage Mechanics. Springer-Verlag, Berlin.

Google Scholar

[10] Lubliner, J., 1991. Plasticity Theory. MacMillan Publ., New York.

Google Scholar

[11] Nguyen, Q.S., Bui, H.D., 1974. Sur les matériaux élastoplastiques à écrouissage positif et négatif. J. Méca. 13, 321-342.

Google Scholar

[12] Simo, J.C., Ju, J.W., 1987. Strain- and stress-based continuum damage models. I. Formulation. Int. J. Solids Struct. 23, 821-840.

DOI: 10.1016/0020-7683(87)90083-7

Google Scholar

[13] Truesdell, C., Noll, W., 1992. The Non-linear Field Theories of Mechanics, Second Edition. Springer-Verlag, Berlin.

Google Scholar