Microstructure and Corrosion Resistance of AM60 Magnesium Alloy Modified by Plasma Surface Treatment

Article Preview

Abstract:

Fine single solid solution α-Mg phases with an average grain size of less than 5 um was obtained in the melting layer of the surface of AM60 Mg alloy by means of plasma beam treatment. The influence of the plasma parameter on both the melting depth and the grain size was discussed. The microstructure, morphology and corrosion properties of the melting layer were analyzed by optical microscopy (OP), scanning electron microscopy (SEM), simulated corrosion test, respectively. The micro-hardness of the melting layer is up to 200 HV0.05 by means of environment-friendly plasma surface treatment and the corrosion resistance of AM60 magnesium alloy was greatly improved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-234

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.H. Cao, L.Y. Lin, Z. Zhang, J.Q. Zhang and C.N. Cao: T. Nonfree. Metal. Soc. Vol. 18 (2008), p.240.

Google Scholar

[2] W.B. Xue, Q. Jin, Q.Z. Zhu, M. Hua and Y.Y. Ma: J. Alloy. Compd. Vol. 482 (2009), p.208.

Google Scholar

[3] F. Chen, H. Zhou, B. Yao, Z. Qin and Q.F. Zhang: Surf. Coat. Tech. Vol. 201 (2007), p.4905.

Google Scholar

[4] Y.Q. Wang, M.Y. Zheng and K. Wu: Mater. Lett. Vol. 59 (2005), p.1727.

Google Scholar

[5] J.D. Loveless, H. Alemohammad, J. Li, V. Gertsman, D. Emadi, E. Toyserkani and S. Esmaeili: Mater. Lett. Vol. 63 (2009), p.1397.

DOI: 10.1016/j.matlet.2009.03.015

Google Scholar

[6] M. Hazra, A.K. Mondal, S. Kumar, C. Blawert and Narendra B. Dahotre: Surf. Coat. Tech. Vol. 203 (2009), p.2292.

Google Scholar

[7] J. Dutta Majumdar, R. Galun, B.L. Mordike, et al.: Mater. Sci. Eng. A. Vol. 361 (2003), p.119.

Google Scholar

[8] D. Dubé, M. Fiset, A. Couture and I. Nakatsugawa: Mater. Sci. Eng. A. Vol. 299 (2001), p.38.

Google Scholar

[9] F. Stippich, E. Vera, G. K. Wolf, et al.: Surf. Coat. Tech. Vol. 103 (1998), p.29.

Google Scholar

[10] A. Léon, E.J. Knystautas, J. Huot and R. Schulz: Thin. Solid. Films. Vol. 496 (2006), p.683.

DOI: 10.1016/j.tsf.2005.08.227

Google Scholar

[11] L.P. Wu, J.J. Zhao, Y.P. Xie and Z.D. Yang: T. Nonferr. Metal. Soc. Vol. 20 (2010), p. s630.

Google Scholar

[12] Y.W. Song, D.Y. Shan and E.H. Han: Electrochim. Acta. Vol. 53 (2008), p.2135.

Google Scholar

[13] Y.R. Gao, C.M. Liu, S.L. Fu, J. Jin, X. Shu and Y.H. Gao: Surf. Coat. Tech. Vol. 204 (2010), p.3629.

Google Scholar

[14] S.Y. Zhang, Q. Li, X.K. Yang, X.K. Zhong, et al.: Mater. Charact. Vol. 61 (2010), p.269.

Google Scholar

[15] S.C. Zhang, H.Q. Duan and Q.Z. Cai: China. Foundry. Vol. 50 (2001), p.310.

Google Scholar

[16] Y.H. Liu, Z.X. Guo, Y. Yang, H.Y. Wang, J.D. Hu, Y.X. Li, A.N. Chumakov and N.A. Bosak: Appl. Surf. Sci. Vol. 253 (2006), p.1722.

Google Scholar

[17] H.Y. Yin, H.Z. Cui: Mater. Mech. Eng. Vol. 24 (2000), p.50.

Google Scholar