Thermal Analysis during Solidification of Mg-4%.wtAl Alloy during Lost Foam Casting Process

Article Preview

Abstract:

The lost foam casting (LFC) process utilizes the expanded polystyrene (EPS) foam pattern for the production of metallic components. The thermal degradation of the foam pattern has a significant effect on microstructure of the component. Dendrite coherency is important for the determination of the formation of the solidification structure and cast ability of alloys. The effects of the dendrite coherency on grain size in Mg-4Al alloy have been studied using the two-thermocouple thermal analysis technique in the solidified sample. The results also indicate that the grain size increases with the temperature interval between liquids (TN) and dendrite coherency point (TDCP), The solid fraction at DCP (fsDCP) expressed in percent strongly dependents on the dendrite morphology during solidification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

371-377

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ASM metals handbook. Casting, vol. 15. Ohio: ASM International; (1992).

Google Scholar

[2] H-E Littleton, B. Vatankhah: Trans. Amer. Found. Soc. 2001, 109, 1573.

Google Scholar

[3] S. Shivkumar, X. Yao, M. Makhlouf: Polymer-melt interactions during casting formation in the lost foam process, Scripta Metallurgical Materials (1995), p.33, 39-46.

DOI: 10.1016/0956-716x(95)00146-m

Google Scholar

[4] M. Bamberger, G. Dehm, Ann. Rev. Mater. Res. 389 (2008) 505-533.

Google Scholar

[5] S. Kleiner, O. Beffort, A. Wahlen, P.J. Uggowitzer, J. Light Met. 2 (2002) 277-280.

Google Scholar

[6] I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald, M. Niewczas, Mater. Sci. Eng. A 496 (2008) 247-255.

DOI: 10.1016/j.msea.2008.05.019

Google Scholar

[7] Z.L. Liu, J.Y. Hu, Q.D. Wang: Evaluation of the effect of vacuum on mold filling in the magnesium EPC process, Materials Process Technology 120 (2002) 94-100.

DOI: 10.1016/s0924-0136(01)01085-8

Google Scholar

[8] S. Shivkumar and B. Galloys, Trans. Am. Foundrymen's Soc. 95(1987)791.

Google Scholar

[9] S. Shivkumar and B. Galloys, Trans. Am. Foundrymen's Soc. 95(1987)801.

Google Scholar

[10] J.O. Barlow and D.M. Stefanescu: AFS Trans (1997), vol. 105, pp.349-354.

Google Scholar

[11] K.G. UPadhya, D.M. Stefanescu, K. Lieu and D.P. Yeager: AFS Trans (1989), vol. 97, pp.61-66.

Google Scholar

[12] L. Backuerud, G. Chai, J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys, AFS/Skanaluminium, Stockholm, Sweden, (1990).

Google Scholar

[13] M. Makekan and S.G. Shabestari:. Effect of Grain Refinement on the Dendrite Coherency Point during Solidification of the A319 Aluminum Alloy, The Minerals, Metals & Materials Society and ASM International (2009).

DOI: 10.1007/s11661-009-9978-y

Google Scholar

[14] S.M. Liang: Solidification behavior, mechanical properities and semi-solid formability of cast Mg-Al-Ca alloys, Ph.D. Dissertation, Institute of Metal Research Chinese Academy of Scinence, (2009).

Google Scholar

[15] Z.L. Liu, Q.L. Pan, Z.F. Chen, Heat transfer characteristics of lost foam casting process of magnesium alloy. Trans. Nonferrous Met. SOC. China 16(2006) 445-451.

DOI: 10.1016/s1003-6326(06)60076-9

Google Scholar

[16] G. Chai, L. Backerud, T. Rolland and L. Arnberg: Metall. Mater. Trans. A(1995), vol. 26A, pp.965-70.

Google Scholar

[17] L.M. Natalia et al: Dendrite Coherency of Al-Si-Cu Alloys Metallurgical and materials transactions A (2001), vol. 32A, pp.147-155.

Google Scholar

[18] A.K. Dahle and L. Arnberg: Proc. ICAA4, Atlanta, GA, 1994, pp.91-98.

Google Scholar