Effect of Annealing on Structural and Optical Properties of Zr Doped ZnO Film Grown by RF Magnetic Sputtering

Article Preview

Abstract:

Zinc oxide (ZnO) and Zirconium (Zr) doped ZnO nano films have been successfully fabricated by radio frequency (RF) magnetic sputtering. The crystal structure and morphology were investigated by X-ray Diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM) and Transmission Electron Microscope (TEM). As the doped Zr content increases, ZnO nano films show various morphologies. The optical band gap of pure ZnO films increases from 3.27 eV to 3.53 eV with Zr concentration increasing to 9.66 at.%. After annealing, the polycrystalline structure of ZnO changes a little and the energy gap decreases. In addition, the clean and lower doped ZnO films show much lower transmittance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

696-705

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, P. Yang, Sci Vol. 292(2001), p.1897.

Google Scholar

[2] J. J. Robbins, J. Harvey, J. Leaf, C. Fry, C. A. Wolden, Thin Solid Films, Vol. 473(2005), p.35.

Google Scholar

[3] D.C. Kundaliya, Nat. Mater Vol. 3 (2004), p.709.

Google Scholar

[4] J. Elanchezhiyan, K. P. Bhuvana, N. Gopalakrishnan, T. Balasubramanian, J. Alloy. Compd Vol. 463 (2008), p.84.

Google Scholar

[5] S. A. Studenikin, M. Cocivera, W. Kellner, H. Pascher, J. Lumin Vol. 91 (2000), p.223.

Google Scholar

[6] L. H. Van, M. H. Hong, J. Ding, J. Alloy. Compd Vol. 449 (2008), p.207.

Google Scholar

[7] S. S. Sarkisov, D. E. Diggs, G. Adamovsky, M. J. Curley, Appl. Opt Vol . 40 (2001), pp.349-359.

Google Scholar

[8] P. Liu, S. H. Lee, H. M. Cheong, C. E. Tracy, J. R. Pitts, R.D. Smith, J. Electrochem. Soc Vol. 149 (2002), p. H76-H80.

Google Scholar

[9] Z. A. Ansari, R. N. Karekar, R. C. Aiyer, Thin Solid Films Vol. 301 (1997), p.82–89.

DOI: 10.1016/s0040-6090(97)00029-1

Google Scholar

[10] C. K. Kwok, C. R. Aita. J. Vac. Sci. Technol Vol. 7(1989), p.1235.

Google Scholar

[11] S.B. Qadri, H. Kim, H.R. Khan, W.J. Kim, E.F. Skelton, Thin Solid Films Vol. 377/378(2000), p, 750.

DOI: 10.1016/s0040-6090(00)01328-6

Google Scholar

[12] L. S. Dake, D. R. Baer, J. M. Zachara, Surf. Interface. Anal Vol. 14(1989), p.71.

Google Scholar

[13] D.D. Sarma, C.N.R. Rao, J. Electron. Spectrosc. Relat. Phenom Vol. 20(1980), p.25.

Google Scholar

[14] S. B. Qadri, H. Kim, J. S. Horwitz, D. B. Chrisey, J. Appl. Phys Vol. 88(2000), p.6564.

Google Scholar

[15] M. Chen, Z. L. Pei, X. Wang, C. Sun, L. S. Wen, J. Vac. Sci. Technol. A, Vac. Surf. Films Vol. 19(1990), p.963.

Google Scholar

[16] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, Willey, New York, (1976), p.58.

Google Scholar

[17] F. Wang, M. Lv, Z. Pang, T. Yang, Y. Dai, S. Han, Appl. Surf. Sci Vol. 254(2008), pp.6983-6986.

Google Scholar

[18] Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, X. Fan, J. Phys. Chem. B Vol. 110 (2006), p.4714.

Google Scholar

[19] V. Srikant, D. R. Clarkea, J. Appl. Phys Vol. 81(1997), p.6357.

Google Scholar

[20] H. Q. Le, S. Tripathy, S. J. Chua, Appl. Phys. Lett Vol. 92(2008), p.141910.

Google Scholar

[21] X. H. Li, C. L. Shao, Y. C. Liu, X. Y. Chu, C. H. Wang, B. X. Zhang, J. Chem. Phys Vol. 129(2008), p.114708.

Google Scholar

[22] H. Cheng, K. Lin, H. Hsu, W. Hsieh, Appl. Phys. Lett Vol, 88(2006), p.261909.

Google Scholar

[23] W. Cao, W. Du, J. Lumin. Vol. 124(2007), pp.260-264.

Google Scholar

[24] G. Águila, J. Jiménez, S. Guerrero, F. Gracia, B. Chornik, S. Quinteros, P. Araya, Appl. Catal. A Vol. 360(2009), pp.98-105.

DOI: 10.1016/j.apcata.2009.03.014

Google Scholar

[25] F. Urbach. Phys. Rev Vol. 92(1953), p.1324.

Google Scholar