Synthesis and Properties of Diphenylquinoxaline as Electron-Transporting Materials

Article Preview

Abstract:

Bis-(2,3-diphenylquinoxaline) (DDPQL) has been synthesized by condensation reaction with 3,3'-diaminobenzidine and benzil. The thermal and electrical properties of DDPQL were measured as well. Organic electroluminescent device using DDPQL as electron-transporting layer was fabricated. The structure of the organic electroluminescent device is ITO/α-NPD/ Alq/DDPQL/LiF/Al. The maximum brightness of the electroluminescent device at voltage of 13.5V is 12,100cd/m², the maximum current efficiency at voltage of 13.0V is 4.97cd/A, the external quantum efficiency is 1.92%, and the lowest drive-voltage is 3.5V. This indicates that the compounds are useful as electron-transporting materials in organic electroluminescent devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-188

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jitendra K Pandey, K Raghunat ha Reddy, A Prat heep Kumar and R.P. Singh: Polym. Degrad. Stab. Vol. 88(2005), p.234.

Google Scholar

[2] C.W. Tang and S.A. Vanslyke: Appl. Phys. Lett. Vol. 51(1987), p.913.

Google Scholar

[3] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns and A.B. Holmes: Nature Vol. (1990), p.347.

Google Scholar

[4] Wang Xin, Shen Juan and Xu Hongyao: Journal of Functional Materials Vol. 39(2008), p.1555.

Google Scholar

[5] Zhang Xiaobing, Zhang Zimin, Zhang Yugui and Li Min: Chinese Journal of Organic Chemistry Vol. 29(2009), p.297.

Google Scholar

[6] Peng Zhang, Benchen Tang, Wenjing Tian, Bing Yang and Min Li: Mater. Chem. Phys. Vol. 119(2010), p.243.

Google Scholar

[7] Yuan Ji Bing, Louis M. Leung and Gong Menglian: Tetrahedron Lett. Vol. 45(2004), p.6361.

Google Scholar

[8] Ruiping Deng, Jiangbo Yu, Hongjie Zhang, Liang Zhou, Zeping Peng, Zhefeng Li and Zhiyong Guo: Chem. Phys. Lett. Vol. 443(2007), p.258.

Google Scholar

[9] Tamao K, Uchida M, Izumizawa T, Furukawa K and Yamag-uchi S: J . Am. Chem. Soc. Vol. 118(1996), p.11974.

Google Scholar

[10] Akira Adachi, Hiroyuki Yasuda, Takanobu Sanji, Hideki Sakurai and Koichi Okita: J. Lumin. Vol. 87-89(2000), p.1174.

Google Scholar

[11] Murata H, Kafafi Z H and Uchida M: Appl. Phys. Lett. Vol. 80(2002), pp.189-191.

Google Scholar

[12] Leonidas C. Palilis, Hideyuki Murata, Manabu Uchida and Zakya H. Kafafi: Org. Electron. Vol. 4(2003), p.113.

Google Scholar

[13] Richard A. Klenkler, Hany Aziz, An Tran, Zoran D. Popovic and Gu Xu: Org. Electron. Vol. 9(2008), p.285.

Google Scholar

[14] Hsiao Fan Chen, Shang Jung Yang, Zhen Han Tsai, Wen-Yi Hung, Ting-Chih Wang and Ken-Tsung Wong: J. Mater. Chem. Vol. 19(2009), p.8112.

Google Scholar

[15] Toshinori Matsushima, Mayumi Takamori , Yuichi Miyashita, Yoko Honma, Tsuyoshi Tanaka, Hidenori Aihara, and Hideyuki Murata: Org. Electron. Vol. 11(2010), p.16.

Google Scholar

[16] Li Tingxi, Takashi Yamamoto, Hsing-Lin Lan and Junhi Kido: Polym. Adv. Technol. Vol. 15(2004), p.266.

Google Scholar

[17] Li Tingxi, Hidehito Fukuyama, Yoshinori Yamagata, Hsing-Lin Lan and Junhi Kido: Polym. Adv. Technol. Vol. 15(2004), p.302.

Google Scholar

[18] Li Tingxi and Junji Kido: Ploymer Preprints Vol. 51(2002), p.791.

Google Scholar

[19] Abhishek P. Kulkarni, Christopher J. Tonzola, Amit Babel and Samson A. Jenekhe: Chem. Mater. Vol. 16(2004), p.4556.

Google Scholar

[20] Vasilis P. Barberis, John A. Mikroyannidis and Ioakim K. Spiliopoulos: Synth. Met. Vol. 157(2007), p.475.

Google Scholar

[21] Andrzej Danel, Ewa Gondek and Iwan Kityk: Opt. Mater. Vol. 32(2009), p.267.

Google Scholar