Effect of Pr on the Microstructure and Electrical Properties of Ta-Doped TiO2 Capacitor-Varistor Ceramics

Article Preview

Abstract:

TiO2 varistors doped with 0.1 mol% Ta and different concentrations of Pr3+ were obtained by ceramic sintering processing at 1400 °C and their properties were characterized by XRD, SEM, I-V and impedance spectroscopy. The effect of Pr on the microstructure, nonlinear electrical behavior and dielectric properties of the Ta-doped TiO2 ceramics were investigated. It is found that Pr affects the grain size, electrical properties and the dielectric properties of the TiO2-based varistors. The samples have the nonlinear coefficients (α) values of (3.0-5.0) with low breakdown voltages (4-30 V/mm). A small quantities of Pr can improve the nonlinear properties of the samples significantly. It was found that an optimal doping composition of 0.5 mol% Pr3+ leads to a low breakdown voltage of 9.2 V/mm, a high nonlinear constant of 4.9 and an ultrahigh electrical permittivity of 8.38×104 (at 1 kHz), which is consistent with the highest grain boundary barriers of the ceramics. In view of these electrical characteristics, the TiO2-0.5 mol% Pr3+ ceramic is a viable candidate for capacitor-varistor functional devices. The defects theory was introduced to explain the nonlinear electrical behavior of Pr-doped TiO2 ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-38

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. K. Gupta: J. Am. Ceram. Soc. Vol. 73 (1990), p.1817.

Google Scholar

[2] M. S. Castro and C. M. Aldao: Appl. Phys. Lett. Vol. 63(1992), p.1077.

Google Scholar

[3] M. H. Wang, K. A. Hu, B. Y. Zhao and N. F. Zhang: Mater. Chem. Phys. Vol. 74(2002), p.187.

Google Scholar

[4] S. H. Luo, Z. L. Tang, J. Y. Li and Z. T. Zhang: Ceram. Int. Vol. 34 (2008), P. 1345.

Google Scholar

[5] G. Z. Zang, J. W. Wang, H. C. Chen, W. B. Su, W. X. Wang, C. M. Wang and P. Qi: J. Alloys Compd. Vol. 377 (2004), p.82.

Google Scholar

[6] K. S. Philip: Mater. Sci. Eng. B Vol. 33 (1995), p.58.

Google Scholar

[7] M. F. Yan, W. W. Rhodes: Appl. Phys. Lett. Vol. 40 (1982), p.536.

Google Scholar

[8] S. L. Yang and J. M. Wu: J. Am. Ceram. Soc. Vol. 76 (1993), p.145.

Google Scholar

[9] J. Y. Li, S. H. Luo, W. H. Yao and Z. G. Zhang: Mater. Lett. Vol. 57 (2003), p.3748.

Google Scholar

[10] M. Houabes and R. Metz: Ceram. Int. Vol. 33 (2007), P. 1191.

Google Scholar

[11] C. W. Nahm: Mater. Lett. Vol. 57 (2003), p.1317.

Google Scholar

[12] J. F. Wang: Chin. Phys. Lett. Vol. 17 (2000), p.530.

Google Scholar

[13] M. Matsuoka: Jpn. J. Appl. Phys. Vol. 10 (1971), p.736.

Google Scholar

[14] T. K. Gupta and W. G. Carlson: J. Mater. Sci. Vol. 20 (1985), p.348.

Google Scholar

[15] S. R. Dhage and V. Ravi: Appl. Phys. Lett. Vol. 83 (2003), p.4539.

Google Scholar

[16] C. P. Li, J. F. Wang, H. C. Chen, W. B. Su and D. X. Zhuang: Mater. Sci. Eng. B Vol. 85 (2001), p.6.

Google Scholar

[17] W.Y. Wang, D. F. Zhang, T. Xu, X. F. Li and T. Zhou: J. Alloys Compd. Vol. 335 (2002), p.210.

Google Scholar