Efficient Guiding of Terahertz Wave by Thin Metal Corrugation on Both Surfaces

Article Preview

Abstract:

Thin structured periodic metallic corrugations on both sides of low-loss thin polythene slab are proposed to efficiently guide terahertz (THz) wave based on the surface plasmon polaritons (SPPs). THz time domain spectrometer was used to measure the transmission characteristic. Long-lasting Fabry-Perot resonance modes are demonstrated due to the interferences of the multiple reflected waves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-69

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A. Maier, Plasmonics-Fundamentals and Applications (Springer, New York, 2007).

Google Scholar

[2] H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Google Scholar

[3] F.Q. Wu, D.Z. Han, X. Li, X.H. Liu and J. Zi, Opt. Express 16, 6619-6624 (2008).

Google Scholar

[4] H. F. Ghaemi , T. Tineke, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).

Google Scholar

[5] Z.C. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).

Google Scholar

[6] W. L. Barnes, A. Dereux and T. W. Ebbesen, surface plasmon subwavelength optics, Nature 424, 824-830 (2003).

DOI: 10.1038/nature01937

Google Scholar

[7] T. Nikolajsen, K. Leosson and S. I. Bozhevolnyi, Appl. Phys. Lett. 85, 5833-5835 (2004).

Google Scholar

[8] T. Nikolajsen, K. Leosson, I. Salakhutdinov and S. I. Bozhevolnyi, Appl. Phys. Lett. 82, 668-670 (2003).

DOI: 10.1063/1.1542944

Google Scholar

[9] A. P. Hibbins, B. R. Evans and J. R. Sambles, Science 308, 670-672 (2005).

Google Scholar

[10] J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolívar, and H. Kurz, Phys. Rev. B 69, 155427 (2004).

DOI: 10.1103/physrevb.69.155427

Google Scholar

[11] Tae-In, Jeon, J.Q. Zhang and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).

Google Scholar

[12] L.F. Shen, X.D. Chen and Tzong-Jer Yang, Opt. Express 16, 3326-3333 (2008).

Google Scholar

[13] S. I. Bozhevolnyi, V. S. Volkov, L. Kristjan and J. Erland, Opt. Lett. 26, 734-736 (2001).

Google Scholar

[14] M. Michael, D. Juraj, U. Karl and G. Erich, J. Opt. Soc. Am. B 26, 554-558 (2009).

Google Scholar

[15] J. G. Rivas, C. Schotsch, P.H. Bolivar and H. Kurz, Phys. Rev. B 68, 201306 (2003).

Google Scholar

[16] J.G. Han, A. K. Azad, M.F. Gong, X.C. Lu and W.L. Zhang, Appl. Phys. Lett. 92, 071122 (2007).

Google Scholar

[17] E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, D. S. Kim and Tae-In Jeon, Opt. Express 17, 9212-9218 (2009).

Google Scholar

[18] F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen and L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003).

Google Scholar

[19] D. -B. Tian, H. -W. Zhang, Q. -Y. W, Y. -S. Xie, Y. -Q. Song, Chin. Phy. Lett. 27, 044211 (2010).

Google Scholar

[20] M. Wachter, M. Nagel and H. Kurz, Appl. Phys. Lett. 92, 161102 (2008).

Google Scholar