Fretting Wear and Microstructure of Plasma Carburized TiAl Alloy

Article Preview

Abstract:

A carburized layer is fabricated in the surface of TiAl alloy using plasma carburization at 975 °C. Fretting wear test at ambient temperature was carried out to evaluate wear resistance of carburized TiAl. Glow discharge spectrum, X-ray diffraction and scanning electron microscopy equipped with energy dispersive spectrometry were used to characterize the microstructure of carburized TiAl and its property capability. The experimental results show that the carburized layer with about 5 μm in thickness is mainly composed of Ti2AlC and possesses better fretting wear resistances at ambient temperature. Precipitation of carbides in surface layer leads to a higher surface hardness and compressive stress, causing a surface strengthening of TiAl. Strengthening mechanism of carburized TiAl is also considered in this investigation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

651-657

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. H. Wu: Intermetallics Vol. 14 (2006), p.1114.

Google Scholar

[2] K. Liu, Y. C. Ma, M. Gao, G. B. Rao, Y.Y. Li, K. Wei, X. H. Wu and M.H. Loretto: Intermetallics Vol. 13 (2005), p.925.

Google Scholar

[3] P. X. Fu, X. H. Kang, Y.C. Ma, K. Liu, D. Z. Li and Y. Y. Li: Intermetallics Vol. 16 (2008), p.130.

Google Scholar

[4] J. Li, S. Li, J. Zhang, W. Ma, D. Zhou and Z. Zhou: Trans. Nonferrous Met. Soc. China Vol. 12 (2002), p.625.

Google Scholar

[5] H. R. Jiang, Z. H. Wang, W. S. Ma, X. R. Feng, Z. Q. Dong, L. Zhang and Y. Liu: Trans. Nonferrous Met. Soc. China Vol. 18 (2008), p.512.

Google Scholar

[6] C. Boonruang and S. Thongtem: Appl. Surf. Sci. Vol. 256 (2009), p.484.

Google Scholar

[7] T. Noda, M. Okabe and S. Isobe: Mater. Sci. Eng. Vol. A213 (1996), p.157.

Google Scholar

[8] Z. Xu: Plasma Surface Metallurgy (Science Press, Beijing 2008).

Google Scholar

[9] D. Z. Wang, Y. Gong and T. G. Ma: Chinese Journal of Computation Physics, Vol. 10 (1993), p.215.

Google Scholar

[10] Z. S. li and M. A. Yang: Modern Technology of Surface Engneering (China Machine Press, Beijing 2007).

Google Scholar

[11] C. Boonruanga, T. Thongtema, M. McNallanb and S. Thongtema: Mater. Lett. Vol. 58 (2004), p.3175.

Google Scholar

[12] G. Cam, H. M. Flower and R. F. West: High Temperature Ordered Intermetasllic alloys Ⅲ (PA, Pittsburgh 1989).

Google Scholar

[13] R. Ramaseshan, A. Kakitsuji, S. K. Seshadri, N.G. Nair, H. Mabuchi, H. Tsuda, T. Matsui and K. Morii: Intermetallics Vol. 7 (1999), p.571.

DOI: 10.1016/s0966-9795(98)00069-7

Google Scholar

[14] S. J. Bull and E. G. Berasetegui: Tribol. Int. Vol. 39 (2006), p.99.

Google Scholar

[14] F. Y. Yan, H. D. Zhou and Z. F. Zhang: Tribology Vol. 15 (1995), p.145.

Google Scholar

[15] X. P. Liu, Z. Xu, F. Xu, W. P. Liang, C. L. Guo and W. H. Tian: Trans. Nonferrous Met. Soc. China Vol. 15 (2005), p.420.

Google Scholar

[16] C. Scheu, E. Stergar, M. Schober, L. Cha, H. Clemens, A. Bartels, F.P. Schimansky and A. Cerezo: Acta Materialia Vol. 57 (2009), p.1504.

DOI: 10.1016/j.actamat.2008.11.037

Google Scholar

[17] C. L. A. Ben and B. Tlili: Surf. Coat. Tech. Vol. 201 (2006), p.1511.

Google Scholar