Effect of Rapid Thermal Annealing Condition on the Structure and Conductivity Properties of Polycrystalline Silicon Films on Glass

Article Preview

Abstract:

The effect of rapid thermal annealing (RTA) temperature (700~1200 °C) and time (1~8 min) on the structure and conductivity properties of polycrystalline silicon (Si) films on glass, grown by RTA crystallization of magnetron sputtering (MS) deposited amorphous Si (a-Si) films, was investigated by means of X-ray diffraction (XRD) and UV reflectance. It was observed the critical temperature for crystallizing a-Si films was ~750 °C and ~700 °C based on XRD and reflectance measurements, respectively. As soon as RTA temperature reached and exceeded the critical value, the structural property of polycrystalline Si films increased with RTA temperature or time. The above results were related to the thermal and photon effects induced by RTA. Moreover, it was revealed that the resistivity of polycrystalline Si films decreased with RTA temperature, however, even the resistivity of the polycrystalline Si films annealed at 1200 °C was 2 orders of magnitude higher than that of Si target, attributed to the carrier scattering by grain boundaries or defects. The polycrystalline Si films on glass fabricated by MS deposition combined with RTA crystallization may endow them with great application potentials in Si thin-film solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

634-640

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Green: Appl. Phys. A Vol. 96 (2009), p.153.

Google Scholar

[2] S. Gall, C. Becker, E. Conrad, P, Dogan, F. Fenske, B. Gorka, K.Y. Lee, B. Rau, F. Ruske and B. Rech: Sol. Energy Mater. Sol. Cells Vol. 93 (2009), p.1004.

DOI: 10.1016/j.solmat.2008.11.029

Google Scholar

[3] A.G. Aberle: J. Cryst. Growth Vol. 287 (2006), p.386.

Google Scholar

[4] A. Mimura, N. Konishi, K. Ono, J. -I. Ohwada, Y. Hosokawa, Y.A. Ono, T. Suzuki, K. Miyata and H. Kawakami: IEEE Trans Electron Device Vol. 36 (1989), p.351.

DOI: 10.1109/16.19936

Google Scholar

[5] R. Bisaro, J. Magarino, K. Zellama, S. Squelard, P. Germain and J.F. Morhange: Phy. Rev. B Vol. 31 (1985), p.3568.

Google Scholar

[6] M.K. Hatalis and D.W. Greve: J. Appl. Phys. Vol. 63 (1988), p.2260.

Google Scholar

[7] G. Farhi, M. Aoucher and T. Mohammed-Brahim: Sol. Energy Mater. Sol. Cells Vol. 72 (2002), p.551.

Google Scholar

[8] R. Kakkad, J. Smith, W.S. Lau and S.J. Fonash: J. Appl. Phys. Vol. 65 (1989), p. (2069).

Google Scholar

[9] C.W. Lee, C. Lee and Y.T. Kim: Appl. Phys. A Vol. 56 (1993), p.123.

Google Scholar

[10] Y. Wang, S. Liao, Z. Ma, G. Yue, H. Diao, J. He, G. Kong, Y. Zhao, Z. Li and F. Yun: Appl. Surf. Sci. Vol. 135 (1998), p.205.

Google Scholar

[11] S. Girginoudi, D. Girginoudi, A. Thanailakis, N. Georgoulas and V. Papaioannou: J. Appl. Phys. Vol. 84 (1998), p. (1968).

DOI: 10.1063/1.368352

Google Scholar

[12] J. Song, H. Ge, X. Geng and Z. Wang: Sol. Energy Mater. Sol. Cells Vol. 62 (2000), p.201.

Google Scholar

[13] R. Singh: J. Appl. Phys. Vol. 63 (1988), p. R59.

Google Scholar

[14] R. Singh, M. Fakhruddin and K.F. Poole: Appl. Surf. Sci. Vol. 168 (2000), p.198.

Google Scholar

[15] C. Spinellaa, S. Lombardo and F. Priolo: J. Appl. Phys. Vol. 84 (1998), p.5383.

Google Scholar

[16] T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka and S. Tsuda: J. Non-Cryst. Solids Vol. 198-200 (1996), p.940.

DOI: 10.1016/0022-3093(96)00091-9

Google Scholar

[17] I. Suni, G. Göltz, M.G. Grimaldi, M-.A. Nicolet and S.S. Lau: Appl. Phys. Lett. Vol. 40 (1982), p.269.

DOI: 10.1063/1.93034

Google Scholar

[18] E.F. Kennedy, L. Csepregi, J.W. Mayer and T.W. Sigmon: J. Appl. Phys. Vol. 48 (1977), p.4241.

Google Scholar

[19] J.S. Williams and R.G. Elliman: Phys. Rev. Lett. Vol. 51 (1983), p.1069.

Google Scholar

[20] Y. Kimura, M. Kishi and T. Katoda: J. Appl. Phys. Vol. 86 (1999), p.2278.

Google Scholar

[21] Y. Mishima, M. Takei, T. Uematsu, N. Matsumoto, T. Kakehi, U. Wakino and M. Okabe: J. Appl. Phys. Vol. 78 (1995), p.217.

DOI: 10.1063/1.360782

Google Scholar

[22] C.S. McCormick, C.E. Weber, J.R. Abelson, G.A. Davis, R.E. Weiss and V. Aebi: J. Vac. Sci. Technol. A Vol. 15 (1997), p.2770.

Google Scholar

[23] M. Cardona and F.H. Pollak: Phys. Rev. Vol. 146 (1966), p.558.

Google Scholar

[24] C. -H. Kuo, I. -C. Hsieh, D.K. Sohroder, G.N. Maraoas, S. Chen and T.W. Sigmon: Appl. Phys. Lett. Vol. 71 (1997), p.359.

Google Scholar