Controlled Growth and Supercapacitive Behaviors of CVD Carbon Nanotube Arrays

Article Preview

Abstract:

Low-pressure chemical vapor deposition (LP-CVD) technique has been utilized for controlled growth of carbon nanotube (CNT) arrays on silicon wafers. The tube-diameters of CNTs and the number of graphene layers are controlled by varying the thickness of catalyst films. The catalyst particle density and the growth conditions such as the ambient gas and the local environment are all crucial for the formation of vertically aligned CNT arrays. The length of CNT arrays can be controlled by altering the growth time. In addition, the supercapacitive properties of CNT arrays with various morphologies growing on different current collectors have been investigated using a less corrosive 0.5 M Na2SO4 aqueous solution as the electrolyte. Vertically aligned CNT arrays on Ti-Si substrate produce a higher capacitance compared to randomly oriented CNTs on the same current collector. Furthermore, Ni foam enables better utilization of active materials than Ti-Si substrate. CNT arrays electrodes fabricated by this simple, low cost approach demonstrate stable and consistent capacitor behaviors for a wide range of scan rates. Moreover, CNT arrays electrodes provide better platform for further integration with transitional metal oxide, via simple sputtering or electrodeposition technique, to enhance the supercapacitive performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-18

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] C.M. Niu, E.K. Sichel, R. Hoch, D. Moy and H. Tennent: Appl. Phys. Lett. Vol. 70 (1997), p.1480.

Google Scholar

[3] R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu and D.H. Wu: J. Power Sources Vol. 84 (1999), p.126.

Google Scholar

[4] J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen and Z.F. Ren: Carbon Vol. 40 (2002), p.1193.

Google Scholar

[5] E. Frackowiak and F. Béguin: Carbon Vol. 40 (2002), p.1775.

Google Scholar

[6] C.S. Du, J. Yeh and N. Pan: Nanotechnology Vol. 16 (2005), p.350.

Google Scholar

[7] Q. Jiang, Y. Zhao, X.Y. Lu, X.T. Zhu, G.Q. Yang, L.J. Song, Y.D. Cai, X.M. Ren and L. Qian: Chem. Phys. Lett. Vol. 410 (2005), p.307.

Google Scholar

[8] Z.J. Li, L. Wang, Y.J. Su, P. Liu and Y.F. Zhang: Nano-Micro Lett. Vol. 1 (2009), p.9.

Google Scholar

[9] C. Arbizzani, M. Mastragostino and F. Soavi: J. Power Sources Vol. 100 (2001), p.164.

Google Scholar

[10] Y.D. Zhu, H.Q. Hu, W.C. Li and X.Y. Zhang: Carbon Vol. 45 (2007), p.160.

Google Scholar

[11] X.Y. Han, Y.H. Gao and X.H. Zhang: Nano-Micro Lett. Vol. 1 (2009), p.4.

Google Scholar

[12] L. Jin, C. Bower and O. Zhou: Appl. Phys. Lett. Vol. 73 (1998), p.1197.

Google Scholar

[13] M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray and A.H. Windle: Adv. Mater. Vol. 14 (2002), p.382.

Google Scholar

[14] Q.L. Chen, K.H. Xue, W. Shen, F.F. Tao, S.Y. Yin and W. Xu: Electrochim. Acta Vol. 49 (2004), p.4157.

Google Scholar

[15] J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang and F.S. Sheu: Small Vol. 1 (2005), p.560.

Google Scholar

[16] J.M. Soon and K.P. Loh: Electrochem. Solid-State Lett. Vol. 10 (2007), p. A250.

Google Scholar

[17] W.C. Fang, O. Chyan, C.L. Sun, C.T. Wu, C.P. Chen, K.H. Chen, L.C. Chen and J.H. Huang: Electrochem. Commun. Vol. 9 (2007), p.239.

Google Scholar

[18] H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi and Z.N. Gu: Nano Lett. Vol. 8 (2008), p.2664.

Google Scholar

[19] K.W. Nam, C.W. Lee, X.Q. Yang, B.W. Cho, W.S. Yoon and K.B. Kim: J. Power Sources Vol. 188 (2009), p.323.

Google Scholar

[20] W.D. Zhang and J. Chen: Pure Appl. Chem., Vol. 81 (2009), p.2317.

Google Scholar

[21] Z. Fan, J.H. Chen, B. Zhang, B. Liu, X.X. Zhong and Y.F. Kuang: Diam. Relat. Mater. Vol. 17 (2008), p. (1943).

Google Scholar

[22] S. Wei, W.P. Kang, J.L. Davidson and J.H. Huang: Diam. Relat. Mater. Vol. 17 (2008), p.906.

Google Scholar

[23] Y.H. Wang, H. Liu, X.L. Sun and I. Zhitomirskya: Scripta Mater. Vol. 61 (2009), p.1079.

Google Scholar

[24] Y.T. Jang, J.H. Ahn, Y.H. Lee and B.K. Ju: Chem. Phys. Lett. Vol. 372 (2003), p.745.

Google Scholar

[25] S. Wei, W.P. Kang, J.L. Davidson and J.H. Huang: Diamond Relat. Mater. Vol. 15 (2006), p.1828.

Google Scholar

[26] X.B. Zhang, K.L. Jiang, C. Feng, P. Liu, L.N. Zhang, J. Kong, T.H. Zhang, Q.Q. Li and S.S. Fan: Adv. Mater. Vol. 18 (2006), p.1505.

Google Scholar

[27] K. Liu, Y.H. Sun, L. Chen, C. Feng, X.F. Feng, K.L. Jiang, Y.G. Zhao and S.S. Fan: Nano Lett. Vol. 8 (2008), p.700.

Google Scholar

[28] J. Li, Q.M. Yang and I. Zhitomirskya: J. Power Sources Vol. 185 (2008), p.1569.

Google Scholar

[29] D.D. Zhao, Z. Yang, E.S.W. Kong, C.L. Xu and Y.F. Zhang: J. Solid State Electr. (2010), DOI: 10. 1007/s10008-010-1182-x.

Google Scholar

[30] D.D. Zhao, Z. Yang, L.Y. Zhang, X.L. Feng and Y.F. Zhang: submitted to Mater. Chem. Phys. (2010).

Google Scholar