Effects of Annealing on Microstructure and Mechanical Properties of Bulk Nanocrystalline Fe3Al Based Alloy Prepared by Aluminothermic Reaction

Article Preview

Abstract:

The effects of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al based alloy with 10 wt. % Ni prepared by aluminothermic reaction have been investigated. It was found that crystal structure of the alloy did not change after annealing at 600 and 800 °C, while it changed to ordered B2 and nanocrystalline grains orientations became random after annealing at 1000 °C. Average grain sizes of the alloy changed a little after annealing at different temperatures. The alloy after annealing had a large plastic deformation in compression at room temperature and the alloy annealed at 800 °C had the highest compressive yield strength of 1351 MPa. The alloy without annealing had much lower flow stress and good creep property in compression at 800 and 1000°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-61

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. G. Mckamey, J.H. Devan, P. F. Tortorelli: J. Mater. Res Vol. 6 (1991), p.1779.

Google Scholar

[2] N. S. Stoloff: Mater. Sci. Eng. A Vol. 258 (1998), p.2.

Google Scholar

[3] Y. J. Li, J. Wang, H. Q. Wu: Mater. Res. Bull Vol. 36 (2001), p.2389.

Google Scholar

[4] P. Josef, S. Guido: Intermetallics Vol. 10 (2002), p.717.

Google Scholar

[5] Y. D. Huang, L. Froyen: Intermetallics Vol. 10 (2002), p.473.

Google Scholar

[6] W. K. Tredway: Science Vol. 282 (1998), p.1275.

Google Scholar

[7] H. Li, F. Ebrahimi: Adv. Mater Vol. 17 (2005), p. (1969).

Google Scholar

[8] R.G. Baligidad, A. Radhakrishna, Datta Abhijit, Rama Rao: Mater. Sci. Eng. A Vol. 313 (2001), p.117.

Google Scholar

[9] P. Q. La, J. Yang, David J. H. Cockayne, Weimin Liu, Qunji Xue, Yuandong Li: Adv. Mater Vol. 18 (2006), p.733.

Google Scholar

[10] P. Q. La, Y. P. Wei, R. J. Lv, Y Zhao, Y Yang: Mater. Sci. Eng. A Vol. 527 (2010), p.2313.

Google Scholar

[11] Y. Nishino, T. Tanahashi: Mater. Sci. Eng. A Vol. 387-389(2004), p.973.

Google Scholar

[12] Y. D. Huang, W. Y. Yang, Z. Q. Sun: Mater. Sci. Eng. A Vol. 263 (1999), p.75.

Google Scholar

[13] P. Q. La, Y. Yang, Y. P. Bai: Rare Metals Vol. 28 (2009), p.767.

Google Scholar

[14] R.S. Sundar, D.H. Sastry, Y.V.R.K. Prasad: Mater. Sci. Eng. A Vol. 347 (2003), p.86.

Google Scholar

[15] S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, A. K. Mukherjee: Nature Vol. 398 (1999), p.684.

Google Scholar

[16] H. V. Swygenhoven: Science Vol. 296 (2002), p.66.

Google Scholar

[17] L. Lu, X. Chen, X. Huang, K. Lu: Science Vol. 323 (2009), p.607.

Google Scholar

[18] Carl C. Koch, I Lya A. Ovid'ko, Sudipta Seal and Stan Veprek, Structural Nanocrystalline Materials Fundamentals and Applications, Cambridge University Press, Cambridge (2007), Vol. 2, p.41.

DOI: 10.1002/ange.200685538

Google Scholar