Sensitivity Analysis for the Cylindrical Pressure Vessel of 16MnR Steel with the Monte-Carlo Method

Article Preview

Abstract:

Probabilistic safety assessment procedure is used to evaluate the cylindrical pressure vessel of 16MnR steel, which regards defect sizes, mechanical properties and stresses as random variables. Monte-Carlo simulation is applied on calculating failure probability, which is based on the Chinese safety assessment procedure (GB/T 19624-2004). Sensitivity analysis is performed to estimate the effect of change in input parameters. The results show that failure probability may be influenced significantly by change in parameters concerning yield strength and film stress. Additionally, the different distributions of input parameters have an effect on failure probability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

419-424

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Korteoja, L.I. Salminen and K.J. Niskanen, et al: Mater. Sci. Eng. A Vol. 248 (1998), p.173.

Google Scholar

[2] R. Bouchard, G. Shen and W.R. Tyson: Eng. Fract. Mech. Vol. 75 (2008), p.3735.

Google Scholar

[3] S.M.A. Khan: Int. J. Pres. Ves. Pip. Vol. 87 (2010), p.239.

Google Scholar

[4] G.M. Jouris, D.H. Shaffer: Nucl. Eng. Des. Vol. 48 (1978), p.517.

Google Scholar

[5] Y.C. Lin, Y.J. Xie and X.H. Wang: Nucl. Eng. Des. Vol. 229 (2004), p.237.

Google Scholar

[6] P.J. Budden, J.K. Shaples and A. R. Dowling: Int. J. Pres. Ves. Pip. Vol. 77 (2000), p.895.

Google Scholar

[7] Y.C. Lin, Y.J. Xie, X.H. Wang, H. Luo: Int. J. Pres. Ves. Pip. Vol. 81 (2004), p.13.

Google Scholar

[8] W.J. Park, S.S. Kang and B.S. Han: Nucl. Eng. Des. Vol. 212 (2002), p.41.

Google Scholar

[9] S.L. Kwak, J.S. Lee and Y.J. Kim, et al: Nucl. Eng. Des. Vol. 235 (2005), p. (1909).

Google Scholar

[10] G. Walz, H. Riesch-Oppermann: Structural Safety Vol. 28 (2006), p.273.

Google Scholar

[11] J.Q. Zhou, S.M. Shen: Int. J. Pres. Ves. Pip. Vol. 75 (1998), p.693.

Google Scholar

[12] P.N. Li, Y. Lei and Q.P. Zhong, et al: Int. J. Pres. Ves. Pip. Vol. 77 (2000), p.945.

Google Scholar

[13] GB/T 19624: Safety assessment for in-service pressure vessels containing defects (Standards Press of China, Beijing 2004).

Google Scholar

[14] BS7910: Guide to methods for assessing the acceptability of flaws in metallic structures (British Standards Institution, London 2005).

Google Scholar

[15] A.R. Dowling, C.H.A. Townley: Int. J. Pres. Ves. Pip. Vol. 3 (1975), p.77.

Google Scholar

[16] G.H. Chen, S.H. Dai: Int. J. Pres. Ves. Pip. Vol. 69 (1996), p.273.

Google Scholar

[17] P. Dillstrom: Eng. Fract. Mech. Vol. 67 (2000), p.647.

Google Scholar

[18] M. Papadrakakis, V. Papadopoulos and N.D. Lagaros: Comput. Methods Appl. Mech. Engrg. Vol. 136 (1996), p.145.

Google Scholar

[19] H. Akiba, S. Yoshimura and G. Yagawa: Nucl. Eng. Des. Vol. 160 (1996), p.347.

Google Scholar

[20] H.S. Wu, Q.P. Zhong and Y.P. Ying: Int. J. Pres. Ves. Pip. Vol. 68 (1996), p.39.

Google Scholar

[21] X. Jin, Q.P. Zhong and Y.J. Hong: Int. J. Pres. Ves. Pip. Vol. 73 (1997), p.161.

Google Scholar