Improvement of Mechanical Properties of 7475 Aluminium Alloy by the Combination of SPD Processing and Annealing

Article Preview

Abstract:

In the present study, SPD processing was combined with annealing in order to obtain synergic effect of grain size refinement and precipitate strengthening. Samples of 7475 alloy were solution heat treated, water quenched and then subjected to hydrostatic extrusion with a total true strain of about 4. Hydrostatic extrusion resulted in a significant grain refinement from 70 mm to about 70 nm. The samples were subsequently annealed at temperatures inducing the formation of nano-precipitates. The investigations of the structure and mechanical properties of the samples subjected to SPD and annealing revealed different precipitation path in micro- and nano-grained samples. Also, it was found that the combination of HE processing and low temperature annealing results in the formation of nano-precipitates in nano-grained structures which effectively strengthen nano-aluminium alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-314

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Valiev R.Z.: Solid State Phenomena Vol. 114 (2006), pp.7-18.

Google Scholar

[2] Lewandowska M.: Solid State Phenomena 114 (2006), p.109.

Google Scholar

[3] Lewandowska M., Pachla W., Kurzydlowski K.J.: Int. J. Mat. Res. 98 (2007) 172-177.

Google Scholar

[4] Garbacz H., Lewandowska M., Pachla W., Kurzydlowski K.J.: Journal of Microscopy 223 (2006), pp.272-274.

Google Scholar

[5] Wawer K., Lewandowska M., Kurzydlowski K.J.: Materials Science Forum Vols. 584-586 (2008), pp.541-546.

DOI: 10.4028/www.scientific.net/msf.584-586.541

Google Scholar

[6] Zhao Y.H., Liao X.Z., Jin Z., Valiev R.Z., Zhu Y.T.: Acta Materialia Vol 52 (2004), pp.4589-4599.

Google Scholar

[7] Kim W.J., Chung C.S., Ma D.S., Hong S.I., Kim H.K.: Scripta Mater. 49 (2003), pp.333-338.

Google Scholar

[8] Kim J.K., Jeong H.G., Hong S.I., Kim Y.S., Kim W.J.: Scripta Mater. 45 (2001), pp.901-907.

Google Scholar

[9] Dadbakhsh S., Karimi Taheri A., Shmith C.W.: Materials Science and Engineering A 527 (2010), pp.4758-4766.

Google Scholar

[10] Wawer K., Lewandowska M., Wieczorek A., Aifantis E.C., Zehetbauer M., Kurzydlowski K.J.: Kovove Mater. 47 (2009), pp.325-332.

Google Scholar

[11] Information on http: /www. matweb. com.

Google Scholar

[12] Zhao Y.H., Liao X.Z., Jin Z., Valiev R.Z., Zhu Y.T.: Acta Materialia Vol 52 (2004), pp.4589-4599.

Google Scholar

[13] Immarigeon, J. -P., Holt, R.T.; Koul, A.K.; Zhao, L.; Wallace, W.; Beddoes, J.C.: Materials Characterization Vol. 35 (1995), pp.41-67.

DOI: 10.1016/1044-5803(95)00066-6

Google Scholar

[14] Gao N., Starink M. J., Furukawa M., Horita Z., Xu Ch., Langdon T.G.: Materials Science Forum, 503-504 (2006), pp.275-280.

DOI: 10.4028/www.scientific.net/msf.503-504.275

Google Scholar

[15] Starink M.J., Gao N., Furukawa M., Horsta Z., Xu Ch., Langdon T.G.: Advanced Materials Science, Vol. 7 (2004), pp.1-12.

Google Scholar

[16] Li X., Starink M.J.: Materials Science Forum Vol. 331-337 (2000), pp.1071-1076.

Google Scholar