Implementation of Simulation Software for Better Understanding of Manufacturing Processes

Article Preview

Abstract:

The adaptation of universities to the European Higher Education Area (EHEA) plays an essential role in society, creating new knowledge, transferring it to students by means of new and more active methodologies aimed at learning that will enable students to put everything they learn into practice. However, such methodologies are not equally applicable in all subjects. Subjects such as Manufacturing Technology, taught at different levels in both undergraduate and graduate levels, are descriptive to a great extent. This descriptive nature must be supported by new technologies if these subjects claim to be more attractive to students. In this paper some examples of successful case studies are presented. They represent the new way of understanding the teaching replacing the old concept of traditional classroom lecture by more interactive ones and, therefore, more attractive to students.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-64

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Joint declaration of the European Ministers of Education, The Bologna Declaration of 19 June 1999 (1999).

Google Scholar

[2] Joint declaration of the European Ministers of Education, The Bologna Process 2020 - The European Higher Education Area in the new decade (2009).

Google Scholar

[3] Commission of the European Communities, Progress towards the Lisbon objectives in education and training, Indicators and benchmarks (2009).

Google Scholar

[4] O. Picardo, Pedagogía informacional: Enseñar a aprender en la sociedad del conocimiento, FUOC 2002, http: /www. uoc. edu/web/cat/art/uoc/opicardo0602/opicardo0602. html (03/06/2010).

DOI: 10.5377/typ.v1i1.15513

Google Scholar

[5] P. Marquès, Software Educativo. Guía de uso y metodología de diseño, Editorial Estel, Barcelona, (1995).

Google Scholar

[6] www. thirdwavesys. com (03/06/2010).

Google Scholar

[7] S. Malkin, C. Guo, Thermal Analysis of Grinding, CIRP Annals - Manufacturing Technology, Vol. 56(2) (2007) 760.

DOI: 10.1016/j.cirp.2007.10.005

Google Scholar

[8] I. Pombo, N. Ortega, J.A. Sánchez, S. Plaza, B. Izquierdo, A. Mendikute, Metodología experimental para el ajuste de un modelo numérico de predicción de temperaturas en rectificado, XVII Congreso de M-H y Tecnologías de Fabricación, San Sebastián, (2008).

DOI: 10.5944/bicim2022.114

Google Scholar

[9] J.A. Sánchez, I. Pombo, R. González, R. Alberdi, Un modelo numérico para la predicción del comportamiento térmico en procesos de rectificado, II MESIC, Madrid, (2007).

Google Scholar

[10] E. Ukar, A. Lamikiz, I. Tabernero, F. Liébana, J.M. Etayo, Optimización de los parámetros del proceso de pulido láser sobre acero de herramientas DIN1. 2379 mediante un modelo numérico, CIBIM9, Las Palmas de Gran Canaria, (2009).

DOI: 10.20868/upm.thesis.732

Google Scholar