[1]
Pearson, T.G. & H.W.L. Phillips, The Production & Properties of Super-Purity Aluminium. International Materials Reviews, 1957. 2: pp.305-60
Google Scholar
[2]
Engh, T.A., Principles of Metal Refining. 1992, New York: Oxford Science Publications
Google Scholar
[3]
Jarrett, N., et al., Treatment of Molten Aluminum, in U. S. Patent: 3,211,547. 1965, Alcoa
Google Scholar
[4]
Lu, H., et al. Production of Refined Aluminum & High-Purity Aluminum. in 135th TMS Annual Meeting. 2006. San Antonio, TX, United States
Google Scholar
[5]
Stroup, P.T., Purification of Aluminum, in U. S. Patent: 3,198,625. 1965, Aluminum Company of America, Pittsburgh, PA
Google Scholar
[6]
Grandfield, J.F. & J.A. Taylor, The Impact of Rising Ni & V Impurity Levels in Smelter Grade Aluminium & Potential Control Strategies. Materials Science Forum, 2009. 630: pp.129-36
DOI: 10.4028/www.scientific.net/msf.630.129
Google Scholar
[7]
Dube, G., Removal of Impurities from Molten Aluminium, A.I. Limited, Editor. 1984: Canada
Google Scholar
[8]
Dube, G., Removal of Impurities from Molten Aluminium, in U. S. Patent: 4,507,150. 1985, Alcan International Limited, Montreal, Canada
Google Scholar
[9]
Pearson, T.G., The Chemical Background of the Aluminum Industry. Vol. Monograph 3 and 5, 1955, The Royal Institute of Chemistry, London, UK
Google Scholar
[10]
Gariepy, B. & G. Dube, TAC: A New Process for Molten Aluminium Refining, Alcan International Limited, 2007: Canada, USA
Google Scholar
[11]
Szekely, A.G., Process for Removing Alkali-Metal Impurities from Molten Aluminum, in U. S. Patent: 3,958,980. 1976, Union Carbide Corporation, New York, N.Y.
Google Scholar
[12]
Gao, J.W., et al., Effects of Na2B4O7 on the Elimination of Iron from Aluminum Melt. Scripta Materialia, 2007. 57(3): pp.197-200
DOI: 10.1016/j.scriptamat.2007.04.009
Google Scholar
[13]
Samuel, E.H., A.M. Samuel, & H.W. Doty, Factors Controlling the Type & Morphology of Cu-Containing Phases in 319 Al Alloy. Transactions of the American Foundrymen's Society, 1996. 104: p.893
Google Scholar
[14]
Gruzleski, J.E. & B.M. Closset, The Treatment of Liquid Aluminium-Silicon Alloys. 1990, Des Plaines, IL: American Foundrymen's, Inc
Google Scholar
[15]
Setzer, W.C. & G.W. Boone. The Use of Aluminum/ Boron Master Alloys to Improve Electrical Conductivity. in Light Metals. 1992: The Minerals, Metals & Materials Soc
Google Scholar
[16]
Tsumura, Y., Method for Refinement of Impure Aluminum, in U. S. Patent: 4,430,174. 1984, Mitsui Aluminium Co., Ltd.; Tokyo, Japan
Google Scholar
[17]
Grjotheim, K., et al., Aluminium Electrolysis: Fundamentals of the Hall-Heroult Process. 1982: Aluminium Verlag
Google Scholar
[18]
Crepeau, P.N., Effect of Iron in Al-Si Casting Alloys: A Critical Review. Transactions of the American Foundrymen's Society, 1995: p.361
Google Scholar
[19]
Makarov, S., D. Apelian, & R. Ludwig, Inclusion removal & detection in molten aluminum: Mechanical, electromagnetic & acoustic techniques. Transactions of the American Foundrymen's Society, Vol 107, 1999. 107: pp.727-35
Google Scholar
[20]
Apelian, D. How Clean is the Metal you Cast: The Issue of Assessment: a Status Report. in Third International Conference on Molten Aluminum Processing. (1992)
Google Scholar
[21]
Majidi, O., S.G. Shabestari, & M.R. Aboutalebi, Study of Fluxing Temperature in Molten Aluminum Refining Process. Journal of Materials Processing Technology, 2007. 182(1-3): pp.450-5
DOI: 10.1016/j.jmatprotec.2006.09.003
Google Scholar
[22]
Laz, P.J. & B.M. Hillberry, Fatigue Life Prediction from Inclusion Initiated Cracks. International Journal of Fatigue, 1998. 20(4): pp.263-70
DOI: 10.1016/s0142-1123(97)00136-9
Google Scholar
[23]
Liu, L. & F.H. Samuel, Effect of Inclusions on the Tensile Properties of Al-7% Si-0.35% Mg (A356.2) Aluminium Casting Alloy. Journal of Materials Science, 1998. 33(9): pp.2269-81
DOI: 10.1023/a:1004331219406
Google Scholar
[24]
Mollard, F.R., M.C. Flemings, & E.F. Niyama, Aluminum Fluidity in Casting. Journal of Metals, 1987. 39(11): pp.34-7
DOI: 10.1007/bf03257537
Google Scholar
[25]
Laslaz, G. & P. Laty, Gas Porosity & Metal Cleanliness in Aluminum Casting Alloys. Transactions of the American Foundrymen's Society, 1991(Compendex): p.83
Google Scholar
[26]
Roy, N., et al., Porosity Formation in Al-9 wt% Si3 wt% Cu-X Alloy Systems: Measurements of Porosity. Journal of Materials Science, 1996. 31(5): pp.1243-54
DOI: 10.1007/bf00353103
Google Scholar
[27]
Groteke, D.E., Eliminating Hard Spots from Al Die Casting. Die Casting Engineer, 1985. 29: pp.16-24
Google Scholar
[28]
Lewis, D.K., Can We Control Hard Spot Problems. Die Casting Engineer, 1987. 31(2): p.34
Google Scholar
[29]
Revel, G., Aluminium De Haute Purete Obtenu Par Zone Fondue. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 1964. 259(22): p.4031
Google Scholar
[30]
Karabay, S. & I. Uzman, Inoculation of Transition Elements by Addition of AlB2 & AlB12 to Decrease Detrimental Effect on the Conductivity of 99.6% Aluminium in CCL for Manufacturing of Conductor. Journal of Materials Processing Technology, 2005. 160(2): pp.174-82
DOI: 10.1016/j.jmatprotec.2004.06.015
Google Scholar
[31]
Karabay, S. & I. Uzman, A Study on the Possible Usage of Continuously Cast Aluminium 99.6% Containing High Ti, V, & Cr Impurities as Feedstock for the Manufacturing of Electrical Conductors. Materials & Manufacturing Processes, 2005. 20: pp.231-43
DOI: 10.1081/amp-200041884
Google Scholar
[32]
Cooper, P.S. & M.A. Kearns, Removal of Transition Metal Impurities in Aluminium Melts by Boron Additives. Aluminium Alloys: Their Physical & Mechanical Properties, Pts 1-3, 1996. 217: pp.141-6
DOI: 10.4028/www.scientific.net/msf.217-222.141
Google Scholar
[33]
Luan, B., X. Tang, & C. Hung, Increasing the Electrical Conductivity of Aluminum Conductor by Treating the Melt with Boron. Electrical Wire & Cables, 1984. 2: pp.36-40
Google Scholar
[34]
Cooper, P.S., R. Cook, & M.A. Kearns. Effects of Residual Transition Metal Impurities on Electrical Conductivity & Grain Refinement of EC Grade Aluminum. in TMS Annual Meeting. 1997. Warrendale, Pennsylvania: TMS Minerals, Metals & Materials Soc (TMS)
Google Scholar
[35]
Dawless, R.K. & S.C. Jacobs, Production of Extreme Purity Aluminum, in U. S. Patent: 4,222,830. 1980, Aluminum Company of America, Pittsburgh, PA
Google Scholar
[36]
Dawless, R.K. & S.C. Jacobs, Production of Extreme Purity Aluminum, in U. S. Patent: 4,239,606. 1980, Aluminum Company of America, Pittsburgh, PA
Google Scholar
[37]
Shingu, H., et al., Process for Producing High-Purity Aluminum, in U. S. Patent: 4,469,512. 1984, Showa Aluminum Corporation, Osaka, Japan
Google Scholar
[38]
Belov, N.A., D.G. Eskin, & A.A. Aksenov, Iron in Aluminium Alloys: Impurity & Alloying Element. 2002, London: Taylor & Francis
DOI: 10.1201/9781482265019
Google Scholar
[39]
Mbuya, T.O., B.O. Odera, & S.P. Ng'ang'a, Influence of Iron on Castability & Properties of Aluminium Silicon Alloys: Literature Review. International Journal of Cast Metals Research, 2003. 16(5): pp.451-65
DOI: 10.1080/13640461.2003.11819622
Google Scholar
[40]
Taylor, J.A., The Role of Iron in the Formation of Porosity in Al-Si-Cu alloy castings. 1997, University of Queensland
Google Scholar
[41]
Simensen, C.J. & P. LeBrun, Removal of Iron & Manganese in Aluminum Alloys by adding Magnesium & Subsequently Centrifuging, in Light Metals 2009, G. Bearne, Editor. 2009, Minerals, Metals & Materials Soc: Warrendale. pp.777-81
Google Scholar
[42]
Valdes, A.F., et al., Aluminum, in TMS Annual Meeting - Light Metals. 1997, TMS: Warrendale, PA
Google Scholar
[43]
Gariepy, B. & G. Dube, in TMS Annual Meeting - Light Metals. 1986, TMS: Warrendale, PA
Google Scholar
[44]
Gorner, H., et al., Removal of Na & Ca from Aluminum Scrap through Filtration. 2006 BIMW: 2006 Beijing International Materials Week, Pts 1-4, 2007. 546-549: pp.801-6
DOI: 10.4028/www.scientific.net/msf.546-549.801
Google Scholar
[45]
Gorner, H., et al., AlF3 as an Aluminium Filter Medium. Light Metals 2005, 2005: pp.939-44
Google Scholar
[46]
Simensen, C.J. & C. Berg, A Survey of Inclusions in Aluminium. aluminium, 1980. 56(5): pp.335-40
Google Scholar
[47]
Damoah, L. & L. Zhang, Removal of Inclusions from Aluminum Through Filtration. Metallurgical & Materials Transactions B. 41(4): pp.886-907
DOI: 10.1007/s11663-010-9367-3
Google Scholar
[48]
Simensen, C.J. & U. Hartvedt, Analysis of Oxides in Aluminum by means of Melt Filtration. Zeitschrift Fur Metallkunde, 1985. 76(6): pp.409-14
DOI: 10.1515/ijmr-1985-760604
Google Scholar
[49]
Ciftja, A., et al., Purification of solar cell Si materials through filtration. Rare Metals, 2006. 25: pp.180-5
DOI: 10.1016/s1001-0521(07)60070-9
Google Scholar
[50]
Lae, E., et al., Experimental & Numerical Study of Ceramic Foam Filtration. Light Metals 2006 Vol 4: Cast Shop Technology & Recycling - Aluminum, 2006: pp.753-8
Google Scholar
[51]
Towsey, N., et al., The influence of Grain Refiners on the Efficiency of Ceramic Foam Filters. Light Metals 2001, 2001: pp.973-7
Google Scholar
[52]
Towsey, N., W. Schneider, & H.P. Krug, The Effects of Rod Grain Refiners with Dffering Ti/B Ratio on Ceramic Foam Filtration. Light Metals 2002, 2002: pp.931-5
Google Scholar
[53]
Tian, C., et al., Inclusion Removal From Aluminum Melts Through Filtration, in Advances in Production & Fabrication of Light Metals & Metal Matrix Composites. 1992: Edmonton, Alberta; Canada. pp.153-61
Google Scholar
[54]
Kolin, A., An Electromagnetokinetic Phenomenon Involving Migration of Neutral Particles. Science, 1953. 117(3032): pp.134-7
DOI: 10.1126/science.117.3032.134
Google Scholar
[55]
Vives, C. & R. Ricou. Liquid-Solid Separation in a Molten Metal by a Stationary Electromagnetic Field. in Liquid-Metal Flows & Magnetohydrodynamics, 3rd International Seminar in the MHD Flows & Turbulence Series. 1983. Beer-Sheva, Isr: AIAA
DOI: 10.2514/5.9781600865589.0387.0401
Google Scholar
[56]
Marty, P. & A. Alemany. Theoretical & Experimental Asspects of Electromagnetic Seperation. in Symposium of the IUTAM. 1982. London: The Metals Society
Google Scholar
[57]
Sun, B.D., et al., Purification Technology of Molten Aluminum. Journal of Central South University of Technology, 2004. 11(2): pp.134-41
Google Scholar
[58]
Kondo, M., H. Maeda, & M. Mizuguchi, The Production of High-Purity Aluminum in Japan. Jom-Journal of the Minerals Metals & Materials Society, 1990. 42(11): pp.36-7
DOI: 10.1007/bf03220434
Google Scholar
[59]
Dawless, R.K., et al., Production of Extreme-Purity Aluminum & Silicon by Fractional Crystallization Processing. Journal of Crystal Growth, 1988. 89(1): pp.68-74.
DOI: 10.1016/0022-0248(88)90073-5
Google Scholar
[60]
Edwards, J.D., F.C. Frary, & Z. Jeffries, The Aluminum Industry, Vol. I. Aluminum & Its Production. 1930, New York & London: McGraw-Hill
Google Scholar
[61]
Hoopes, W., F.C. Frary, & J.D. Edwards, Electrolytic Production of Aluminum, in U. S. Patent: 1,534, 317. 1922, Aluminum Company of America
Google Scholar
[62]
Cie. Alais, in French Patent No. 759588, Brit. Patent No. 405596. (1934)
Google Scholar
[63]
Hurter, H., in Brit. Patent No. 469,361. (1937)
Google Scholar
[64]
ToturVista. Refining of Aluminum. 2010 [cited; Available from: http://www.tutorvista.com/topic/refining-of-aluminium-%28hoopes-process%29
Google Scholar
[65]
Bratsberg, H., O.H. Herbjornsen, & D. Foss, Zone Refining of Aluminum. Review of Scientific Instruments, 1963. 34(7): p.777
DOI: 10.1063/1.1718570
Google Scholar
[66]
Kino, T., et al., Zone-Refining of Aluminum. Transactions of the Japan Institute of Metals, 1976. 17(10): pp.645-8
Google Scholar
[66]
Pfann, W.G., Principleas of Zone-Melting. Journal of Metals, 1952. 4(2): p.151
Google Scholar
[68]
Pfann, W.G., C.E. Miller, & J.D. Hunt, New Zone Refining Techniques for Chemical Compounds. Review of Scientific Instruments, 1966. 37(5): p.649
DOI: 10.1063/1.1720273
Google Scholar
[69]
Fischer, D., A Study on Zone Refining: Solid-Phase Impurity Diffusion & Influence of Separating Impure End. Journal of Applied Physics, 1973. 44(5): pp.1977-82
DOI: 10.1063/1.1662502
Google Scholar
[70]
Lux, A.L. & M.C. Flemings, Refining by Fractional Solidification. Metallurgical Transactions B (Process Metallurgy), 1979. 10 B: pp.71-8
DOI: 10.1007/bf02653975
Google Scholar
[71]
Herington, E.F.G., Zone Refining as a Purification Tool. Annals of the New York Academy of Sciences, 1966. 137(Purification of Materials): pp.63-71
DOI: 10.1111/j.1749-6632.1966.tb49743.x
Google Scholar
[72]
Hashimoto, E., Y. Ueda, & T. Kino, Purification of Ultra-High Purity Aluminum. Journal De Physique Iv, 1995. 5(C7): pp.153-7
DOI: 10.1051/jp4:1995715
Google Scholar
[73]
Jacobs, S.C., Purification of Aluminum, in U. S. Patent: 3,303,019. 1967, Aluminum Company of America, Pittsburgh, PA
Google Scholar
[74]
Lawless, R.K. & R.E. Graziano, Fractional Crystallization Process, in U. S. Patent: 4,294,612. 1981, Aluminum Company of America, Pittsburgh, PA
Google Scholar